
Iroha handbook: installation, getting
started, API, guides, and

troubleshooting
Release

Hyperledger Iroha community

Sep 17, 2020





Table of contents

1 Overview of Iroha 3
1.1 What are the key features of Iroha? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Where can Iroha be used? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 How is it different from Bitcoin or Ethereum? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 How is it different from the rest of Hyperledger frameworks or other permissioned blockchains? . . . 4
1.5 How to create applications around Iroha? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Concepts and Architecture 5
2.1 Core concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 What’s inside Iroha? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3 Quick Start Guide 17
3.1 Prerequisites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2 Starting Iroha Node . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.3 Try other guides . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4 Integrated Projects 23
4.1 Hyperledger Ursa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.2 Hyperledger Explorer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.3 Hyperledger Burrow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

5 Building Iroha 31
5.1 Prerequisites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.2 Installing dependencies with Vcpkg Dependency Manager . . . . . . . . . . . . . . . . . . . . . . . 34
5.3 Build Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

6 Configure 37
6.1 Configure TLS for client-peer communication (torii) . . . . . . . . . . . . . . . . . . . . . . . . . . 37
6.2 Deployment-specific parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
6.3 Environment-specific parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
6.4 Logging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

7 Deploy 43
7.1 Running single instance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
7.2 Running multiple instances (peer network) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
7.3 Deploying Iroha on Kubernetes cluster . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
7.4 Dealing with troubles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

i



8 Maintain 51
8.1 Restarting Iroha node with existing WSV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
8.2 Iroha installation security tips . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
8.3 Shepherd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

9 Develop on Iroha 57
9.1 Client Libraries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
9.2 Key Pair Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
9.3 Iroha API reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
9.4 Use Case Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

10 Join the Community 163
10.1 How Can I Contribute? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
10.2 Styleguides . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
10.3 Places where community is active . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

11 FAQ 167
11.1 I’m new. Where to start? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
11.2 What type of data can be transferred? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
11.3 Can mobile device be a node? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
11.4 What is the throughput (TPS)? Are there any performance test results? . . . . . . . . . . . . . . . . 168

12 Doxygen Technical Documentation 169

ii



Iroha handbook: installation, getting started, API, guides, and troubleshooting, Release

Welcome! Hyperledger Iroha is a simple blockchain platform you can use to make trusted, secure, and fast applications
by bringing the power of permission-based blockchain with Crash fault-tolerant consensus. It’s free, open-source, and
works on Linux and Mac OS, with a variety of mobile and desktop libraries.

You can download the source code of Hyperledger Iroha and latest releases from GitHub page.

This documentation will guide you through the installation, deployment, and launch of Iroha network, and explain to
you how to write an application for it. We will also see which use case scenarios are feasible now, and are going to be
implemented in the future.

As Hyperledger Iroha is an open-source project, we will also cover contribution part and explain you a working
process.

Table of contents 1

https://github.com/hyperledger/iroha


Iroha handbook: installation, getting started, API, guides, and troubleshooting, Release

2 Table of contents



CHAPTER 1

Overview of Iroha

1.1 What are the key features of Iroha?

• Simple deployment and maintenance

• Variety of libraries for developers

• Role-based access control

• Modular design, driven by command–query separation principle

• Assets and identity management

In our quality model, we focus on and continuously improve:

• Reliability (fault tolerance, recoverability)

• Performance Efficiency (in particular time-behavior and resource utilization)

• Usability (learnability, user error protection, appropriateness recognisability)

1.2 Where can Iroha be used?

Hyperledger Iroha is a general purpose permissioned blockchain system that can be used to manage digital assets,
identity, and serialized data. This can be useful for applications such as interbank settlement, central bank digital
currencies, payment systems, national IDs, and logistics, among others.

For a detailed description please check our Use Case Scenarios section.

1.3 How is it different from Bitcoin or Ethereum?

Bitcoin and Ethereum are designed to be permissionless ledgers where anyone can join and access all the data. They
also have native cryptocurrencies that are required to interact with the systems.

3

develop/cases.html


Iroha handbook: installation, getting started, API, guides, and troubleshooting, Release

In Iroha, there is no native cryptocurrency. Instead, to meet the needs of enterprises, system interaction is permis-
sioned, meaning that only people with requisite access can interact with the system. Additionally, queries are also
permissioned, such that access to all the data can be controlled.

One major difference from Ethereum, in particular, is that Hyperledger Iroha allows users to perform common func-
tions, such as creating and transferring digital assets, by using prebuilt commands that are in the system. This negates
the need to write cumbersome and hard to test smart contracts, enabling developers to complete simple tasks faster
and with less risk.

1.4 How is it different from the rest of Hyperledger frameworks or
other permissioned blockchains?

Iroha has a novel, Crash fault tolerant consensus algorithm (called YAC1) that is high-performance and allows for
finality of transactions with low latency.

Also, Iroha’s built-in commands are a major benefit compared to other platforms, since it is very simple to do common
tasks such as create digital assets, register accounts, and transfer assets between accounts. Moreover, it narrows the
attack vector, improving overall security of the system, as there are less things to fail.

Finally, Iroha is the only ledger that has a robust permission system, allowing permissions to be set for all commands,
queries, and joining of the network.

1.5 How to create applications around Iroha?

In order to bring the power of blockchain into your application, you should think first of how it is going to interface
with Iroha peers. A good start is to check Concepts and Architecture section, explaining what exactly is a transaction
and query, and how users of your application are supposed to interact with it.

We also have several client libraries which provide tools for developers to form building blocks, such as signatures,
commands, send messages to Iroha peers and check the status.

1 Yet Another Consensus

4 Chapter 1. Overview of Iroha

concepts_architecture/index.html


CHAPTER 2

Concepts and Architecture

Iroha is a system that can work with different concepts, and for your convenience we would like you to look through
them so you could familiarise yourself with what you will be dealing with. That can be done in “Core concepts
section”.

To learn, what Iroha is made of, please check out “What’s inside Iroha?”

2.1 Core concepts

Why Iroha runs in a network? How to understand the objects inside and outside the system? How peers in the network
collaborate and decide which data to put into the blockchain? We will look through the basics of Iroha in this section.

2.1.1 Account

An Iroha entity that is able to perform specified set of actions. Each account belongs to one of existing domains.

An account has some number of roles (can be null) — which is a collection of permissions. Only grantable permissions
are assigned to an account directly.

2.1.2 Asset

Any countable commodity or value. Each asset is related to one of existing domains. For example, an asset can
represent any kind of such units - currency unit, a bar of gold, real estate unit, etc.

2.1.3 Block

Transaction data is permanently recorded in files called blocks. Blocks are organized into a linear sequence over time
(also known as the block chain)1.

1 https://en.bitcoin.it/wiki/Block

5

https://en.bitcoin.it/wiki/Block


Iroha handbook: installation, getting started, API, guides, and troubleshooting, Release

Blocks are signed with the cryptographic signatures of Iroha peers, voting for this block during consensus. Signable
content is called payload, so the structure of a block looks like this:

Outside payload

• signatures — signatures of peers, which voted for the block during consensus round

Inside payload

• height — a number of blocks in the chain up to the block

• timestamp — Unix time (in milliseconds) of block forming by a peer

• array of transactions, which successfully passed validation and consensus step

• hash of a previous block in the chain

• rejected transactions hashes — array of transaction hashes, which did not pass stateful validation step; this field
is optional

2.1.4 Client

Any application that uses Iroha is treated as a client.

A distinctive feature of Iroha is that all clients are using simple client-server abstractions when they interact with a peer
network: they don’t use any abstractions which are specific for blockchain-related systems. For example, in Bitcoin
clients have to validate blocks, or in HL Fabric they need to poll several peers to make sure that a transaction was
written in a block, whereas in HL Iroha a client interacts with any peer similarly to a single server.

2.1.5 Command

A command is an intention to change the state of the network. For example, in order to create a new role in Iroha you
have to issue Create role command.

2.1.6 Consensus

A consensus algorithm is a process in computer science used to achieve agreement on a single data value among
distributed processes or systems. Consensus algorithms are designed to achieve reliability in a network involving
multiple unreliable nodes. Solving that issue – known as the consensus problem – is important in distributed computing
and multi-agent systems.

Consensus, as an algorithm

6 Chapter 2. Concepts and Architecture

../develop/api/commands.html#create-role


Iroha handbook: installation, getting started, API, guides, and troubleshooting, Release

An algorithm to achieve agreement on a block among peers in the network. By having it in the system, reliability is
increased.

For consensus as Iroha’s component, please check this link.

2.1.7 Domain

A named abstraction for grouping accounts and assets. For example, it can represent an organisation in the group of
organisations working with Iroha.

2.1.8 Peer

A node that is a part of Iroha network. It participates in consensus process.

2.1.9 Permission

A named rule that gives the privilege to perform a command. Permission cannot be granted to an account directly,
instead, account has roles, which are collections of permissions. Although, there is an exception, see Grantable
Permission.

List of Iroha permissions.

Grantable Permission

Only grantable permission is given to an account directly. An account that holds grantable permission is allowed to
perform some particular action on behalf of another account. For example, if account a@domain1 gives the account
b@domain2 a permission that it can transfer assets — then b@domain2 can transfer assets of a@domain1 to anyone.

2.1.10 Proposal

A set of transactions that have passed only stateless validation.

Verified Proposal

A set of transactions that have passed both stateless and stateful validation, but were not committed yet.

2.1.11 Query

A request to Iroha that does not change the state of the network. By performing a query, a client can request data from
the state, for example a balance of his account, a history of transactions, etc.

2.1.12 Quorum

In the context of transactions signing, quorum number is a minimum amount of signatures required to consider a
transaction signed. The default value is 1. For MST transactions you will need to increase that number.

Each account can link additional public keys and increase own quorum number.

2.1. Core concepts 7

architecture.html#block-consensus-yac
../develop/api/permissions.html
mailto:a@domain1
mailto:b@domain2
mailto:b@domain2
mailto:a@domain1
architecture.html#world-state-view


Iroha handbook: installation, getting started, API, guides, and troubleshooting, Release

2.1.13 Role

A named abstraction that holds a set of permissions.

2.1.14 Signatory

Represents an entity that can confirm multisignature transactions for an account. It can be attached to account via
AddSignatory and detached via RemoveSignatory.

2.1.15 Transaction

An ordered set of commands, which is applied to the ledger atomically. Any non-valid command within a transaction
leads to rejection of the whole transaction during the validation process.

Transaction Structure

Payload stores all transaction fields, except signatures:

• Time of creation (unix time, in milliseconds)

• Account ID of transaction creator (username@domain)

• Quorum field (indicates required number of signatures)

• Repeated commands which are described in details in commands section

• Batch meta information (optional part). See Batch of Transactions for details

Signatures contain one or many signatures (ed25519 public key + signature)

Reduced Transaction Hash

Reduced hash is calculated over transaction payload excluding batch meta information. Used in Batch of Transactions.

Transaction Statuses

Hyperledger Iroha supports both push and pull interaction mode with a client. A client that uses pull mode requests
status updates about transactions from Iroha peer by sending transaction hashes and awaiting a response. On the
contrary, push interaction is performed by listening of an event stream for each transaction. In any of these modes, the
set of transaction statuses is the same:

Note: We’ve written a great Medium article about Status streaming feature in Iroha. Check it out and let us know
what you think in the comments!

8 Chapter 2. Concepts and Architecture

../develop/api/commands.html#add-signatory
../develop/api/commands.html#remove-signatory
mailto:username@domain
../develop/api/commands.html
https://medium.com/iroha-contributors/status-streaming-in-hl-iroha-5503487ffcfd


Iroha handbook: installation, getting started, API, guides, and troubleshooting, Release

Transaction Status Set

• NOT_RECEIVED: requested peer does not have this transaction.

• ENOUGH_SIGNATURES_COLLECTED: this is a multisignature transaction which has enough signatures and
is going to be validated by the peer.

• MST_PENDING: this transaction is a multisignature transaction which has to be signed by more keys (as
requested in quorum field).

• MST_EXPIRED: this transaction is a multisignature transaction which is no longer valid and is going to be
deleted by this peer.

• STATELESS_VALIDATION_FAILED: the transaction was formed with some fields, not meeting stateless val-
idation constraints. This status is returned to a client, who formed transaction, right after the transaction was
sent. It would also return the reason — what rule was violated.

• STATELESS_VALIDATION_SUCCESS: the transaction has successfully passed stateless validation. This sta-
tus is returned to a client, who formed transaction, right after the transaction was sent.

• STATEFUL_VALIDATION_FAILED: the transaction has commands, which violate validation rules, checking
state of the chain (e.g. asset balance, account permissions, etc.). It would also return the reason — what rule
was violated.

• STATEFUL_VALIDATION_SUCCESS: the transaction has successfully passed stateful validation.

• COMMITTED: the transaction is the part of a block, which gained enough votes and is in the block store at the
moment.

• REJECTED: this exact transaction was rejected by the peer during stateful validation step in previous consensus
rounds. Rejected transactions’ hashes are stored in block store. This is required in order to prevent replay
attacks.

Pending Transactions

Any transaction that has lesser signatures at the moment than quorum of transaction creator account is considered
as pending. Pending transaction will be submitted for stateful validation as soon as multisignature mechanism will
collect required amount of signatures for quorum.

Transaction that already has quorum of signatures can also be considered as pending in cases when the transaction is
a part of batch of transactions and there is a not fully signed transaction.

2.1.16 Batch of Transactions

Transactions batch is a feature that allows sending several transactions to Iroha at once preserving their order.

Each transaction within a batch includes batch meta information. Batch meta contains batch type identifier (atomic
or ordered) and a list of reduced hashes of all transactions within a batch. The order of hashes defines transactions
sequence.

Batch can contain transactions created by different accounts. Any transaction within a batch can require single or
multiple signatures (depends on quorum set for an account of transaction creator). At least one transaction inside a
batch should have at least one signature to let the batch pass stateless validation.

You can read an article about batches on our Contributors’ Page on Medium.

2.1. Core concepts 9

https://en.wikipedia.org/wiki/Replay_attack
https://en.wikipedia.org/wiki/Replay_attack
https://medium.com/iroha-contributors/batches-in-iroha-117614cf1e88


Iroha handbook: installation, getting started, API, guides, and troubleshooting, Release

Atomic Batch

All the transactions within an atomic batch should pass stateful validation for the batch to be applied to a ledger.

Ordered Batch

Ordered batch preserves only the sequence of transactions applying to a ledger. All the transactions that able to pass
stateful validation within a batch will be applied to a ledger. Validation failure of one transaction would NOT directly
imply the failure of the whole batch.

2.1.17 Multisignature Transactions

A transaction which has the quorum greater than one is considered as multisignature (also called mst). To achieve
stateful validity the confirmation is required by the signatories of the creator account. These participants need to send
the same transaction with their signature.

2.1.18 Validation

There are two kinds of validation - stateless and stateful.

Stateless Validation

Performed in Torii. Checks if an object is well-formed, including the signatures.

Stateful Validation

Performed in Verified Proposal Creator. Validates against World State View.

2.1.19 Entity-relationship model

Each Hyperledger Iroha peer has a state, called “World State View”, which is represented by a set of entities and
relations among them. To explain which entities exist in the system and what are the relations, this sections includes
ER diagram and an explanation of its components.

10 Chapter 2. Concepts and Architecture

architecture.html#torii
architecture.html#world-state-view


Iroha handbook: installation, getting started, API, guides, and troubleshooting, Release

ER diagram

Peer

• address — network address and internal port, is used for synchronization, consensus, and communication with
the ordering service

• public_key — key, which will be used for signing blocks during consensus process

Asset

• asset_id — identifier of asset, formatted as asset_name#domain_id

• domain_id — identifier of domain, where the asset was created, references existing domain

• precision — size of fractional part

Signatory

• public_key — a public key

Domain

• domain_id — identifier of a domain

• default_role — a default role per user created in the domain, references existing role

2.1. Core concepts 11



Iroha handbook: installation, getting started, API, guides, and troubleshooting, Release

Role

• role_id — identifier of role

RoleHasPermissions

• role_id — identifier of role, references existing role

• permission_id — identifier of permission

Account

• account_id — identifier of account, formatted as account_name@domain_id

• domain_id — identifier of domain where the account was created, references existing domain

• quorum — number of signatories required for creation of valid transaction from this account

• transaction_count – counter of transactions created by this account

• data — key-value storage for any information, related to the account. Size is limited to 268435455 bytes
(0x0FFFFFFF) (PostgreSQL JSONB field).

AccountHasSignatory

• account_id — identifier of account, references existing account

• public_key — a public key (which is also called signatory), references existing signatory

AccountHasAsset

• account_id — identifier of account, references existing account

• asset_id — identifier of asset, references existing asset

• amount — an amount of the asset, belonging to the account

AccountHasRoles

• account_id — identifier of account, references existing account

• role_id — identifier of role, references existing role

AccountHasGrantablePermissions

• account_id — identifier of account, references existing account. This account gives grantable permission to
perform operation over itself to permittee.

• permittee_account_id — identifier of account, references existing account. This account is given permission to
perform operation over account_id.

• permission_id — identifier of grantable_permission

12 Chapter 2. Concepts and Architecture

mailto:account_name@domain_id


Iroha handbook: installation, getting started, API, guides, and troubleshooting, Release

2.2 What’s inside Iroha?

HL Iroha network consists of several essential components that provide the communication between the nodes. You
can learn about them below.

2.2.1 Torii

Entry point for clients. Uses gRPC as a transport. In order to interact with Iroha anyone can use gRPC endpoints,
described in Commands and Queries sections, or use client libraries.

2.2.2 MST Processor

Multisignature Transactions Processor

It is an internal gRPC service that sends and receives messages from other peers through Gossip protocol. Its mission
is to send out multisignature transactions that have not received enough signatures to reach the quorum until it is
reached.

2.2.3 Peer Communication Service

Internal component of Iroha - an intermediary that transmits transaction from Torii through MstProcessor to Ordering
Gate. The main goal of PCS is to hide the complexity of interaction with consensus implementation.

2.2.4 Ordering Gate

It is an internal Iroha component (gRPC client) that relays transactions from Peer Communication Service to Ordering
Service. Ordering Gate recieves proposals (potential blocks in the chain) from Ordering Service and sends them to

2.2. What’s inside Iroha? 13

glossary.html#client
../develop/api/commands.html
../develop/api/queries.html
../develop/libraries.html
https://en.wikipedia.org/wiki/Gossip_protocol
glossary.html#multisignature-transactions
glossary.html#quorum
glossary.html#transaction
glossary.html#transaction
glossary.html#proposal


Iroha handbook: installation, getting started, API, guides, and troubleshooting, Release

Simulator for stateful validation. It also requests proposal from the Ordering Service based on the consensus round.

2.2.5 Ordering Service

Internal Iroha component (gRPC server) that receives messages from other peers and combines several transactions
that have been passed stateless validation into a proposal. Each node has its own ordering service. Proposal creation
could be triggered by one of the following events:

1. Time limit dedicated to transactions collection has expired.

2. Ordering service has received the maximum amount of transactions allowed for a single proposal.

Both parameters (timeout and maximum size of proposal) are configurable (check environment-specific parameters
page).

A common precondition for both triggers is that at least one transaction should reach the ordering service. Otherwise,
no proposal will be formed.

Ordering service also performs preliminary validation of the proposals (e.g. clearing out statelessly rejected transac-
tions from the proposal).

2.2.6 Verified Proposal Creator

Internal Iroha component that performs stateful validation of transactions contained in received proposal from the
Ordering Service. On the basis of transactions that have passed stateful validation verified proposal will be created
and passed to Block Creator. All the transactions that have not passed stateful validation will be dropped and not
included in a verified proposal.

2.2.7 Block Creator

System component that forms a block from a set of transactions that have passed stateless and stateful validation for
further propagation to consensus.

Block creator, together with the Verified Proposal Creator form a component called Simulator.

2.2.8 Block Consensus (YAC)

Consensus, as a component

Consensus is the heart of the blockchain - it preserves a consistent state among the peers within a peer network. Iroha
uses own consensus algorithm called Yet Another Consensus (aka YAC).

You can check out a video with a thorough explanation of the principles of consensus and YAC in particular here.

Distinctive features of YAC algorithm are its scalability, performance and Crash fault tolerance.

To ensure consistency in the network, if there are missing blocks, they will be downloaded from another peer via
Synchronizer. Committed blocks are stored in Ametsuchi block storage.

For general definition of the consensus, please check this link.

2.2.9 Synchronizer

Is a part of consensus. Adds missing blocks to peers’ chains (downloads them from other peers to preserve consis-
tency).

14 Chapter 2. Concepts and Architecture

glossary.html#stateful-validation
glossary.html#peer
glossary.html#transaction
glossary.html#stateless-validation
glossary.html#proposal
../configure/index.html#environment-specific-parameters
glossary.html#stateful-validation
glossary.html#transaction
glossary.html#proposal
glossary.html#stateless-validation
glossary.html#stateful-validation
https://github.com/hyperledger/iroha/tree/master/irohad/simulator
glossary.html#peer
https://youtu.be/mzuAbalxOKo
glossary.html#consensus
glossary.html#peer


Iroha handbook: installation, getting started, API, guides, and troubleshooting, Release

2.2.10 Ametsuchi Blockstore

Iroha storage component, which stores blocks and a state generated from blocks, called World State View. There is no
way for the client to directly interact with Ametsuchi.

2.2.11 World State View

WSV reflects the current state of the system, can be considered as a snapshot. For example, WSV holds information
about an amount of assets that an account has at the moment but does not contain any info history of transaction flow.

2.2. What’s inside Iroha? 15

glossary.html#client
glossary.html#asset
glossary.html#account
glossary.html#transaction


Iroha handbook: installation, getting started, API, guides, and troubleshooting, Release

16 Chapter 2. Concepts and Architecture



CHAPTER 3

Quick Start Guide

In this guide, we will create a very basic Iroha network, launch it, create a couple of transactions, and check the data
written in the ledger. To keep things simple, we will use Docker.

Note: Ledger is the synonym for a blockchain, and Hyperledger Iroha is known also as Distributed Ledger Technology
framework — which in essence is the same as “blockchain framework”. You can check the rest of terminology used
in the Core concepts section.

3.1 Prerequisites

For this guide, you need a machine with Docker installed. You can read how to install it on a Docker’s website.

Note: Of course you can build Iroha from scratch, modify its code and launch a customized node! If you are curious
how to do that — you can check Building Iroha section. In this guide we will use a standard distribution of Iroha
available as a docker image.

3.2 Starting Iroha Node

3.2.1 Creating a Docker Network

To operate, Iroha requires a PostgreSQL database. Let’s start with creating a Docker network, so containers for
Postgres and Iroha can run on the same virtual network and successfully communicate. In this guide we will call it
iroha-network, but you can use any name. In your terminal write following command:

docker network create iroha-network

17

https://www.docker.com/community-edition/


Iroha handbook: installation, getting started, API, guides, and troubleshooting, Release

3.2.2 Starting PostgreSQL Container

Now we need to run PostgreSQL in a container, attach it to the network you have created before, and expose ports
for communication:

docker run --name some-postgres \
-e POSTGRES_USER=postgres \
-e POSTGRES_PASSWORD=mysecretpassword \
-p 5432:5432 \
--network=iroha-network \
-d postgres:9.5 \
-c 'max_prepared_transactions=100'

Note: If you already have Postgres running on a host system on default port (5432), then you should pick another
free port that will be occupied. For example, 5433: -p 5433:5432

3.2.3 Creating Blockstore

Before we run Iroha container, we may create a persistent volume to store files, storing blocks for the chain. It is done
via the following command:

docker volume create blockstore

3.2.4 Preparing the configuration files

Note: To keep things simple, in this guide we will create a network containing only a single node. To understand how
to run several peers, follow Deploy

Now we need to configure our Iroha network. This includes creating a configuration file, generating keypairs for a
users, writing a list of peers and creating a genesis block.

Don’t be scared away — we have prepared an example configuration for this guide, so you can start testing Iroha node
now. In order to get those files, you need to clone the Iroha repository from Github or copy them manually (cloning is
faster, though).

git clone -b master https://github.com/hyperledger/iroha --depth=1

Hint: --depth=1 option allows us to download only the latest commit and save some time and bandwidth. If you
want to get a full commit history, you can omit this option.

There is a guide on how to set up the parameters and tune them with respect to your environment and load expectations:
Configure. We don’t need to do this at the moment.

3.2.5 Starting Iroha Container

We are almost ready to launch our Iroha container. You just need to know the path to configuration files (from the step
above).

18 Chapter 3. Quick Start Guide

https://github.com/hyperledger/iroha


Iroha handbook: installation, getting started, API, guides, and troubleshooting, Release

Let’s start Iroha node in Docker container with the following command:

docker run --name iroha \
-d \
-p 50051:50051 \
-v $(pwd)/iroha/example:/opt/iroha_data \
-v blockstore:/tmp/block_store \
--network=iroha-network \
-e KEY='node0' \
hyperledger/iroha:latest

If you started the node successfully you would see the container id in the same console where you started the container.

Let’s look in details what this command does:

• docker run --name iroha \ creates a container iroha

• -d \ runs container in the background

• -p 50051:50051 \ exposes a port for communication with a client (we will use this later)

• -v YOUR_PATH_TO_CONF_FILES:/opt/iroha_data \ is how we pass our configuration files to
docker container. The example directory is indicated in the code block above.

• -v blockstore:/tmp/block_store \ adds persistent block storage (Docker volume) to a container,
so that the blocks aren’t lost after we stop the container

• --network=iroha-network \ adds our container to previously created iroha-network for commu-
nication with PostgreSQL server

• -e KEY='node0' \ - here please indicate a key name that will identify the node allowing it to confirm
operations. The keys should be placed in the directory with configuration files mentioned above.

• hyperledger/iroha:latest is a reference to the image pointing to the latest release

You can check the logs by running docker logs iroha.

You can try using one of sample guides in order to send some transactions to Iroha and query its state.

3.3 Try other guides

3.3.1 CLI guide: sending your first transactions and queries

You can interact with Iroha using various ways. You can use our client libraries to write code in various program-
ming languages (e.g. Java, Python, Javascript, Swift) which communicates with Iroha. Alternatively, you can use
iroha-cli – our command-line tool for interacting with Iroha. As a part of this guide, let’s get familiar with
iroha-cli

Attention: Despite that iroha-cli is arguably the simplest way to start working with Iroha, iroha-cli
covers only some possible commands/queries, so user experience might not be the best. If you want to help us
build a better CLI version please let us know!

Open a new terminal (note that Iroha container and irohad should be up and running) and attach to an iroha docker
container:

docker exec -it iroha /bin/bash

3.3. Try other guides 19

https://github.com/hyperledger/iroha/releases


Iroha handbook: installation, getting started, API, guides, and troubleshooting, Release

Now you are in the interactive shell of Iroha’s container again. We need to launch iroha-cli and pass an account
name of the desired user. In our example, the account admin is already created in the test domain. Let’s use this
account to work with Iroha.

iroha-cli -account_name admin@test

Note: Full account name has a @ symbol between name and domain. Note that the keypair has the same name.

Creating the First Transaction

You can see the interface of iroha-cli now. Let’s create a new asset, add some asset to the admin account and
transfer it to other account. To achieve this, please choose option 1. New transaction (tx) by writing tx or
1 to a console.

Now you can see a list of available commands. Let’s try creating a new asset. Select 14. Create Asset
(crt_ast). Now enter a name for your asset, for example coolcoin. Next, enter a Domain ID. In our ex-
ample we already have a domain test, so let’s use it. Then we need to enter an asset precision – the amount of
numbers in a fractional part. Let’s set precision to 2.

Congratulations, you have created your first command and added it to a transaction! You can either send it to Iroha or
add some more commands 1. Add one more command to the transaction (add). Let’s add more
commands, so we can do everything in one shot. Type add.

Now try adding some coolcoins to our account. Select 16. Add Asset Quantity (add_ast_qty),
enter asset ID – coolcoin#test, integer part and coolcoin#test, integer part and precision. For example, to
add 200.50 precision. For example, to add 200.50 coolcoins, we need to enter integer coolcoins, we need to
enter integer part as 20050 and precision as part as 20050 and precision as 2, so it becomes 200.50.

Note: Full asset name has a # symbol between name and domain.

Let’s transfer 100.50 coolcoins from admin@test to test@test by adding one more command and
choosing 5. Transfer Assets (tran_ast). Enter Source Account and Destination Account, in our case
admin@test and test@test, Asset ID (coolcoin#test), integer part and precision (10050 and 2 accord-
ingly).

Now we need to send our transaction to Iroha peer (2. Send to Iroha peer (send)). Enter peer address (in
our case localhost) and port (50051). Now your transaction is submitted and you can see your transaction hash.
You can use it to check transaction’s status.

Go back to a terminal where irohad is running. You can see logs of your transaction.

Yay! You have submitted your first transaction to Iroha.

Creating the First Query

Now let’s check if coolcoins were successfully transferred from admin@test to test@test. Choose 2. New
query (qry). 8. Get Account's Assets (get_acc_ast) can help you to check if test@test now
has coolcoin. Form a query in a similar way you did with commands you did with commands and 1. Send to
Iroha peer (send). Now you can see information about how many coolcoin does test@test have. It will
look similar to this:

20 Chapter 3. Quick Start Guide



Iroha handbook: installation, getting started, API, guides, and troubleshooting, Release

[2018-03-21 12:33:23.179275525][th:36][info] QueryResponseHandler [Account Assets]
[2018-03-21 12:33:23.179329199][th:36][info] QueryResponseHandler -Account Id:-
→˓test@test
[2018-03-21 12:33:23.179338394][th:36][info] QueryResponseHandler -Asset Id- coolcoin
→˓#test
[2018-03-21 12:33:23.179387969][th:36][info] QueryResponseHandler -Balance- 100.50

Isn’t that awesome? You have submitted your first query to Iroha and got a response!

Hint: To get information about all available commands and queries please check our API section.

Being Badass

Let’s try being badass and cheat Iroha. For example, let’s transfer more coolcoins than admin@test has. Try to
transfer 100000.00 coolcoins from admin@test to test@test. Again, proceed to 1. New transaction
(tx), 5. Transfer Assets (tran_ast), enter Source Account and Destination Account, in our case
admin@test and test@test, Asset ID (coolcoin#test), integer part and precision (10000000 and 2 ac-
cordingly). Send a transaction to Iroha peer as you did before. Well, it says

[2018-03-21 12:58:40.791297963][th:520][info] TransactionResponseHandler Transaction
→˓successfully sent
Congratulation, your transaction was accepted for processing.
Its hash is fc1c23f2de1b6fccbfe1166805e31697118b57d7bb5b1f583f2d96e78f60c241

Your transaction was accepted for processing. Does it mean that we had successfully cheated Iroha? Let’s try to
see transaction’s status. Choose 3. New transaction status request (st) and enter transaction’s hash
which you can get in the console after the previous command. Let’s send it to Iroha. It replies with:

Transaction has not passed stateful validation.

Apparently no. Our transaction was not accepted because it did not pass stateful validation and coolcoins were not
transferred. You can check the status of admin@test and test@test with queries to be sure (like we did earlier).

3.3.2 Sending transactions with Python library

Prerequisites

Note: The library only works in Python 3 environment (Python 2 is not supported yet).

To use Iroha Python library, you need to get it from the repository or via pip3:

pip3 install iroha

Now, as we have the library, we can start sending the actual transactions.

Running example transactions

If you only want to try what Iroha transactions would look like, you can simply go to the examples from the repository
here. Let’s check out the tx-example.py file.

3.3. Try other guides 21

https://github.com/hyperledger/iroha-python
https://github.com/hyperledger/iroha-python/tree/master/examples


Iroha handbook: installation, getting started, API, guides, and troubleshooting, Release

Here are Iroha dependencies. Python library generally consists of 3 parts: Iroha, IrohaCrypto and IrohaGrpc which
we need to import:

from iroha import Iroha, IrohaGrpc
from iroha import IrohaCrypto

The line

from iroha.primitive_pb2 import can_set_my_account_detail

is actually about the permissions you might be using for the transaction. You can find a full list here: Permissions.

In the next block we can see the following:

admin_private_key = 'f101537e319568c765b2cc89698325604991dca57b9716b58016b253506cab70'
user_private_key = IrohaCrypto.private_key()
user_public_key = IrohaCrypto.derive_public_key(user_private_key)
iroha = Iroha('admin@test')
net = IrohaGrpc()

Here you can see the example account information. It will be used later with the commands. If you change the
commands in the transaction, the set of data in this part might also change depending on what you need.

Defining the commands

Let’s look at the first of the defined commands:

def create_domain_and_asset():
commands = [

iroha.command('CreateDomain', domain_id='domain', default_role='user'),
iroha.command('CreateAsset', asset_name='coin',

domain_id='domain', precision=2)
]
tx = IrohaCrypto.sign_transaction(

iroha.transaction(commands), admin_private_key)
send_transaction_and_print_status(tx)

Here we define a transaction made of 2 commands: CreateDomain and CreateAsset. You can find a full list here:
commands. Each of Iroha commands has its own set of parameters. You can check them in command descriptions in
iroha-api-reference.

Then we sign the transaction with the parameters defined earlier.

You can define queries the same way.

Running the commands

Last lines

create_domain_and_asset()
add_coin_to_admin()
create_account_userone()
...

run the commands defined previously.

Now, if you have irohad running, you can run the example or your own file by simply opening the .py file in another
tab.

22 Chapter 3. Quick Start Guide

../develop/api/permissions.html
../develop/api/commands.html
../develop/api.html
../develop/api/queries.html


CHAPTER 4

Integrated Projects

One of the ideas of the Hyperledger Consortium is to create solutions that could work together to provide the best
blockchain experience possible. In Iroha we believe that integration of other awesome Hyperledger tools and solutions
is a way to make Iroha better for your use-cases. That is why we have worked on integrations with several projects
and would like to tell you more about what Iroha can work with.

4.1 Hyperledger Ursa

Hyperledger Ursa is a shared cryptographic library that would enable people (and projects) to avoid duplicating other
cryptographic work and hopefully increase security in the process. The library would be an opt-in repository for
projects (and, potentially others) to place and use crypto. Hyperledger Ursa consists of sub-projects, which are cohe-
sive implementations of cryptographic code or interfaces to cryptographic code.

You can easily build Iroha with Ursa library by adding just one flag during the build. It will allow you to use crypto
algorithms from Ursa library instead of standard Iroha cryptography. With the development of new libraries in Ursa
more and more options will be available to you!

Note: Currently, we only get ed25519 SHA-2 algorithm from Ursa. If you like, you can contribute to the code to add
more options.

To allow using the default ed25519/sha3 cryptography algorithm as well as the ones from Ursa, we use Multihash
public key format for the latter. You can learn more about the keys.

4.2 Hyperledger Explorer

Hyperledger Explorer is a blockchain module and one of the Hyperledger projects hosted by The Linux Foundation.
Designed to create a user-friendly Web application, Hyperledger Explorer can view, invoke, deploy or query blocks,
transactions and associated data, network information (name, status, list of nodes), chain codes and transaction fami-
lies, as well as any other relevant information stored in the ledger.

23

https://wiki.hyperledger.org/display/ursa/Hyperledger+Ursa
../build/index.html#main-parameters
../develop/keys.html
https://wiki.hyperledger.org/display/explorer


Iroha handbook: installation, getting started, API, guides, and troubleshooting, Release

Here you can learn how you can use Explorer with Iroha.

4.3 Hyperledger Burrow

Hyperledger Burrow provides a modular blockchain client with a permissioned smart contract interpreter partially
developed to the specification of the Ethereum Virtual Machine (EVM).

So, with HL Burrow you can use Solidity smart-contracts on Iroha. Click below to learn more.

4.3.1 HL Burrow Integration

As Iroha maintainers, we have received many questions and requests for custom smart-contracts support from our
users. And to provide them more freedom in fulfilling their business needs, we integrated HL Burrow EVM – another
great project of the Hyperledger greenhouse, – into Iroha.

Note: In the context of Iroha, HL Burrow provides an Ethereum Virtual Machine that can run Solidity smart-contracts.
We did our best to provide you with the best user experience possible – and to use it with Iroha, you only need to add
a CMake flag during Iroha build and it will start working right away.

You can read about Solidity smart-contract language here, if you are new to this language.

How it works

For this integration, we have created a special Call Engine command in Iroha, as well as a special Engine Receipts
query for retrieving the results of the command.

The command

In the command, you can:

reate a new contract account in EVM

If the callee in the CallEngine is not specified and the input parameter contains some bytecode, a new contract account
is created.

Call a method of a previously deployed contract

If the callee is specified, then the input is treated as an ABI-encoded selector of a method of the callee contract followed
by the arguments.

Hint: It is much like deploying a contract or calling a contract function in Ethereum depending on the contents of the
data field of the eth_sendTransaction message call. See ABI-specification for details.

The query

To query the outcome of a CallEngine command one should use the Engine Receipts query. The output of any
computations inside the EVM will not be available for the caller until it has been written to the ledger (that is, the
block that has the respective Iroha transaction has been committed). Among the other data, the EngineReceipts query
will return an array of log entries generated in the EVM during the CallEngine execution.

24 Chapter 4. Integrated Projects

https://github.com/turuslan/blockchain-explorer/blob/iroha-explorer-integration/iroha-explorer-integration.md
https://wiki.hyperledger.org/display/burrow
../build/index.html#cmake-parameters
https://solidity.readthedocs.io/
../develop/api/commands.html#call-engine
../develop/api/queries.html#engine-receipts
../develop/api/queries.html#engine-receipts
../develop/api/commands.html#call-engine
https://github.com/ethereum/wiki/wiki/JSON-RPC#eth_sendtransaction
https://solidity.readthedocs.io/en/v0.6.5/abi-spec.html
../develop/api/commands.html#call-engine
../develop/api/queries.html#engine-receipts
../develop/api/queries.html#response-structure


Iroha handbook: installation, getting started, API, guides, and troubleshooting, Release

Hint: A common way for dApps developers to let interested parties see the outcome of a contract execution is to
emit an event with some data before exiting a contract function so that this data is written to the Event Log. Ethereum
Yellow Paper defines a log entry as a 3-tuple containing the emitter’s address, an array of 32-byte long topics and a
byte array of some data.

Running Native Iroha Commands in EVM

With HL Burrow integration, you can also use native commands to change the state of Iroha.

The integration mechanism of Burrow EVM empowers Iroha application developers with a tool able to directly act
on the Iroha state from smart contracts code thus providing foundation for programmable business logic extensions of
the built-in Iroha commands system. Conditional asset transfers, transaction fees, non-fungible assets and so on are
just a few examples of such extensions. The tricky part here is that the Iroha data model is quite different from that of
Ethereum. For instance, in Ethereum there is only one kind of built-in asset (Eth) therefore getting an account balance
in EVM context simply means returning the balance property of the account. In Iroha, on the other hand, an account
can have multiple assets, or not have assets at all, so any function that returns an account balance must take at least
one extra argument – the asset ID. Same logic applies to transferring/sending assets from account to account.

As a solution to this data model mismatch problem we introduce so-called Service Contracts in Burrow that are
“aware” of the Iroha data model and expose an API to interact with Iroha state (query balances, transfer assets and so
on).

Note: You can check out Burrow documentation for more information on Natives and external dispatchers.

Schematically the interaction between different parts of the system looks as follows:

Attention: From the Burrow EVM perspective such Service Contract is hosted in a Native external VM and is
callable via the same interfaces as if it was deployed at some special address in the EVM itself. These methods
are used specifically for Iroha integration, so the address of the Service Contract can only be found while working
with it via Iroha.

Current release of the Iroha EVM wrapper contains a single service contract deployed at the address
A6ABC17819738299B3B2C1CE46D55C74F04E290C (the last 20 bytes of the keccak256 hash of the string Service-
Contract) which exposes 2 methods to query Iroha assets balances and transfer assets between accounts.

The signatures of these two methods look like this:

function getAssetBalance(string memory accountID, string memory assetID) public view returns (string
memory result) {}

function transferAsset(string memory src, string memory dst, string memory assetID, string memory
amount) public view returns (string memory result) {}

Hint: From a developer’s perspective calling a function of a native contract is no different from calling a method of
any other smart contract provided the address of the latter is known:

bytes memory payload = abi.encodeWithSignature(“getAssetBalance(string,string)”, “myacc@test”, “coin#test”);

(bool success, bytes memory ret) = address(0xA6ABC17819738299B3B2C1CE46D55C74F04E290C).delegatecall(payload);

4.3. Hyperledger Burrow 25

https://ethereum.github.io/yellowpaper/paper.pdf
https://ethereum.github.io/yellowpaper/paper.pdf
https://wiki.hyperledger.org/display/burrow/Burrow+-+The+Boring+Blockchain
mailto:myacc@test


Iroha handbook: installation, getting started, API, guides, and troubleshooting, Release

Here a special kind of EVM message calls is used - the delegatecall, which allows a contract to dynamically load and
run code from a different address at runtime in its own execution context.

See also:

Now, let’s move to the usage examples

4.3.2 Examples of How to Use HL Burrow EVM

This section demonstrates a few examples of how one can deploy and run smart contracts in an EVM on top of Iroha
blockchain.

To interact with Iroha, we will be using a Python Iroha client. Assuming Iroha node is listening on a local port 50051,
the client code will look something like:

import os
from iroha import Iroha, IrohaCrypto, IrohaGrpc

iroha = Iroha('admin@test')
net = IrohaGrpc('127.0.0.1:50051')

admin_key = os.getenv(ADMIN_PRIVATE_KEY, IrohaCrypto.private_key())
# Code for preparing and sending transaction

Case 1. Running computations and storing data

As the first example we will take the Subcurrency smart contract from the Solidity documentation. The contract code
is the following (the reader may refer to the original documentation to understand what each line of the contract code
means, if necessary):

contract Coin {
// The keyword "public" makes variables
// accessible from other contracts
address public minter;
mapping (address => uint) public balances;

// Events allow clients to react to specific
// contract changes you declare
event Sent(address from, address to, uint amount);

// Constructor code is only run when the contract
// is created
constructor() public {

minter = msg.sender;
}

// Sends an amount of newly created coins to an address
// Can only be called by the contract creator
function mint(address receiver, uint amount) public {

require(msg.sender == minter);
require(amount < 1e60);
balances[receiver] += amount;

}

// Sends an amount of existing coins
// from any caller to an address

26 Chapter 4. Integrated Projects

burrow_example.html
https://iroha.readthedocs.io/en/master/getting_started/python-guide.html
https://solidity.readthedocs.io/en/latest/introduction-to-smart-contracts.html#subcurrency-example


Iroha handbook: installation, getting started, API, guides, and troubleshooting, Release

function send(address receiver, uint amount) public {
require(amount <= balances[msg.sender], "Insufficient balance.");
balances[msg.sender] -= amount;
balances[receiver] += amount;
emit Sent(msg.sender, receiver, amount);

}
}

To start off, we need to compile the source code above to the bytecode. For that we can either use the full-fledged
Solidity compiler or the Web-based Remix IDE. Having got the bytecode, we can now send a transaction from the
Python Iroha client which will deploy the contract to the EVM:

import os
from iroha import Iroha, IrohaCrypto, IrohaGrpc

iroha = Iroha('admin@test')
net = IrohaGrpc('127.0.0.1:50051')

admin_key = os.getenv(ADMIN_PRIVATE_KEY, IrohaCrypto.private_key())
bytecode = ("608060405234801561001057600080fd5b50336000806101000a81548173ffff”

"ffffffffffffffffffffffffffffffffffff021916908373ffffffffffffffff"
...
"030033")

tx = iroha.transaction([
iroha.command('CallEngine', caller='admin@energy', input=bytecode)

])
IrohaCrypto.sign_transaction(tx, admin_key)

net.send_tx(tx)
for status in net.tx_status_stream(tx):

print(status)

To call the mint method of this contract, we send the same CallEngine command with the input parameter containing
the method selector - the first 4 bytes of the keccak256 hash of the function signature:

keccak256(‘mint(address,uint256)’) == ‘40c10f19’

concatenated with the function arguments encoded according to the contract ABI rules – the first function argument
has the address type, that is a 20-bytes long integer number.

Let’s say the contract owner (the admin@test Iroha account) wants to mint 1000 coins and assign them to himself. To
get the EVM address corresponding to the admin@test using Python library we might use:

import sha3
k = sha3.keccak_256()
k.update(b'admin@test')
print(hexlify(k.digest()[12:32]).zfill(64))

That way, we’ll get:

000000000000000000000000f205c4a929072dd6e7fc081c2a78dbc79c76070b

So, the last 20 bytes are keccak256, zero left-padded to 32 bytes.

The amount argument is a uint256 number encoded in hex (also, left-padded):

00000000000000000000000000000000000000000000000000000000000003e8

The entire arguments string is a concatenation of the three pieces above chained together.

4.3. Hyperledger Burrow 27



Iroha handbook: installation, getting started, API, guides, and troubleshooting, Release

Putting it all together, we will get the following client code to call the mint function of the Coin contract:

import os
from iroha import Iroha, IrohaCrypto, IrohaGrpc

iroha = Iroha('admin@test')
net = IrohaGrpc('127.0.0.1:50051')

admin_key = os.getenv(ADMIN_PRIVATE_KEY, IrohaCrypto.private_key())
params = ("40c10f19” #
→˓selector

"000000000000000000000000f205c4a929072dd6e7fc081c2a78dbc79c76070b" #
→˓address

"00000000000000000000000000000000000000000000000000000000000003e8" # amount
)

tx = iroha.transaction([
iroha.command('CallEngine', callee='ServiceContract', input=params)

])
IrohaCrypto.sign_transaction(tx, admin_key)

net.send_tx(tx)
for status in net.tx_status_stream(tx):

print(status)

Calling the send function is done in exactly the same way.

Note the last line of the send function that emits a Sent event which gets recorded in the log as described earlier:

emit Sent(msg.sender, receiver, amount);

Case 2. Querying Iroha state

Earlier we looked at an example of a contract that didn’t interact with Iroha state. However, in most real life applica-
tions one could imagine running on top of Iroha blockchain (like custom business logic in transaction processing or
charging transaction fees etc.) being able to interact with Iroha state is indispensable. In this section we will consider
an example of how one can query balances of Iroha accounts (provided the query creator has respective permissions)
from inside an EVM smart contract.

The code of the contract is presented on the diagram below:

contract QueryIroha {
address public serviceContractAddress;

// Initializing service contract address in constructor
constructor() public {

serviceContractAddress = 0xA6Abc17819738299B3B2c1CE46d55c74f04E290C;
}

// Queries the balance in _asset of an Iroha _account
function queryBalance(string memory _account, string memory _asset) public

returns (bytes memory result) {
bytes memory payload = abi.encodeWithSignature(

"getAssetBalance(string,string)",
_account,
_asset);

(bool success, bytes memory ret) =

28 Chapter 4. Integrated Projects



Iroha handbook: installation, getting started, API, guides, and troubleshooting, Release

address(serviceContractAddress).delegatecall(payload);
require(success, "Error calling service contract function");
result = ret;

}
}

In the constructor we initialize the EVM address of the ServiceContract which exposes an API to interact with Iroha
state. The contract function queryBalance calls the getAssetBalance method of the Iroha ServiceContract API.

Case 3. Changing Iroha state

The final example we consider here is a transfer of an asset from one Iroha account to another.

The contract code is as follows:

contract Transfer {
address public serviceContractAddress;

event Transferred(string indexed source, string indexed destination, string
→˓amount);

// Initializing service contract address in constructor
constructor() public {

serviceContractAddress = 0xA6Abc17819738299B3B2c1CE46d55c74f04E290C;
}

// Queries the balance in _asset of an Iroha _account
function transferAsset(string memory src, string memory dst,

string memory asset, string memory amount) public
returns (bytes memory result) {

bytes memory payload = abi.encodeWithSignature(
"transferAsset(string,string,string,string)",
src,
dst,
asset,
amount);

(bool success, bytes memory ret) =
address(serviceContractAddress).delegatecall(payload);

require(success, "Error calling service contract function");

emit Transferred(src, dst, amount);
result = ret;

}
}

Similarly to querying Iroha state, a command can be sent to modify the latter. In the example above the API method
transferAssetBalance of the ServiceContract sends some amount of the asset from Iroha account src to the account
dst. Of course, if the transaction creator has sufficient permissions to execute this operation.

4.3. Hyperledger Burrow 29

burrow.html#running-native-iroha-commands-in-evm
burrow.html#running-native-iroha-commands-in-evm


Iroha handbook: installation, getting started, API, guides, and troubleshooting, Release

30 Chapter 4. Integrated Projects



CHAPTER 5

Building Iroha

In this guide we will learn how to install all dependencies, required to build Iroha and how to actually build it.

There will be 3 steps:

1. Installing environment prerequisites

2. Installing Iroha dependencies (will be performed automatically for Docker)

3. Building Iroha

Note: You don’t need to build Iroha to start using it. Instead, you can download prepared Docker image from the
Hub, this process explained in details in the Quick Start Guide page of this documentation.

5.1 Prerequisites

In order to successfully build Iroha, we need to configure the environment. There are several ways to do it and we will
describe all of them.

Currently, we support Unix-like systems (we are basically targeting popular Linux distros and MacOS). If you happen
to have Windows or you don’t want to spend time installing all dependencies you might want to consider using Docker
environment. Also, Windows users might consider using WSL

Technically Iroha can be built under Windows natively in experimental mode. This guide covers that way too. All the
stages related to native Windows build are separated from the main flow due to its significant differences.

Please choose your preferred platform below for a quick access:

• Docker

• Linux

• MacOS

• Windows

31

https://en.wikipedia.org/wiki/Windows_Subsystem_for_Linux


Iroha handbook: installation, getting started, API, guides, and troubleshooting, Release

Hint: Having troubles? Check FAQ section or communicate to us directly, in case you were stuck on something. We
don’t expect this to happen, but some issues with an environment are possible.

5.1.1 Docker

First of all, you need to install docker and docker-compose. You can read how to install it on the Docker’s
website

Note: Please, use the latest available docker daemon and docker-compose.

Then you should clone the Iroha repository to the directory of your choice:

git clone -b master https://github.com/hyperledger/iroha --depth=1

Hint: --depth=1 option allows us to download only latest commit and save some time and bandwidth. If you want
to get a full commit history, you can omit this option.

When it is done, you need to run the development environment. Run the scripts/run-iroha-dev.sh script:

bash scripts/run-iroha-dev.sh

Hint: Please make sure that Docker is running before executing the script. MacOS users could find a Docker icon in
system tray, Linux users can use systemctl start docker

After you execute this script, the following things will happen:

1. The script will check whether you have containers with Iroha already running. Successful completion finishes
with the new container shell.

2. The script will download hyperledger/iroha:develop-build and postgres images.
hyperledger/iroha:develop-build image contains all development dependencies and is based
on top of ubuntu:20.04. postgres image is required for starting and running Iroha.

3. Two containers are created and launched.

4. The user is attached to the interactive environment for development and testing with iroha folder mounted
from the host machine. Iroha folder is mounted to /opt/iroha in Docker container.

Now your are ready to build Iroha! Please go directly to Building Iroha section.

5.1.2 Linux

To build Iroha, you will need the following packages:

build-essential git ca-certificates tar ninja-build curl unzip cmake

Use this code to install environment dependencies on Debian-based Linux distro.

32 Chapter 5. Building Iroha

https://www.docker.com/community-edition/
https://www.docker.com/community-edition/
https://github.com/hyperledger/iroha


Iroha handbook: installation, getting started, API, guides, and troubleshooting, Release

apt-get update; \
apt-get -y --no-install-recommends install \
build-essential ninja-build \
git ca-certificates tar curl unzip cmake

Note: If you are willing to actively develop Iroha and to build shared libraries, please consider installing the latest
release of CMake.

Now you are ready to install Iroha dependencies.

5.1.3 MacOS

If you want to build Iroha from scratch and actively develop it, please use the following code to install all environment
dependencies with Homebrew:

xcode-select --install
brew install cmake ninja git gcc@9

Hint: To install the Homebrew itself please run

ruby -e "$(curl -fsSL https://raw.githubusercontent.com/homebrew/install/
master/install)"

Now you are ready to install Iroha dependencies.

5.1.4 Windows

Note: All the listed commands are designed for building 64-bit version of Iroha.

Chocolatey Package Manager

First of all you need Chocolatey package manager installed. Please refer the guide for chocolatey installation.

Building the Toolset

Install CMake, Git, Microsoft compilers via chocolatey being in Administrative mode of command prompt:

choco install cmake git visualstudio2019-workload-vctools ninja

PostgreSQL is not a build dependency, but it is recommended to install it now for the testing later:

choco install postgresql
# Don't forget the password you set!

Now you are ready to install Iroha dependencies.

5.1. Prerequisites 33

https://cmake.org/download/
https://cmake.org/download/
https://chocolatey.org/install


Iroha handbook: installation, getting started, API, guides, and troubleshooting, Release

5.2 Installing dependencies with Vcpkg Dependency Manager

Currently we use Vcpkg as a dependency manager for all platforms - Linux, Windows and MacOS. We use a fixed
version of Vcpkg to ensure the patches we need will work.

That stable version can only be found inside the Iroha repository, so we will need to clone Iroha. The whole process
is pretty similar for all platforms but the exact commands are slightly different.

5.2.1 Linux and MacOS

Run in terminal:

git clone https://github.com/hyperledger/iroha.git
iroha/vcpkg/build_iroha_deps.sh
vcpkg/vcpkg integrate install

After the installation of vcpkg you will be provided with a CMake build parameter like
-DCMAKE_TOOLCHAIN_FILE=/path/to/vcpkg/scripts/buildsystems/vcpkg.cmake. Save
it somewhere for later use and move to Building Iroha section.

5.2.2 Windows

Execute from Power Shell:

git clone https://github.com/hyperledger/iroha.git
powershell -ExecutionPolicy ByPass -File .\iroha\.packer\win\scripts\vcpkg.ps1 .
→˓\vcpkg .\iroha\vcpkg

After the installation of vcpkg you will be provided with a CMake build parameter like
-DCMAKE_TOOLCHAIN_FILE=C:/path/to/vcpkg/scripts/buildsystems/vcpkg.cmake. Save it
somewhere for later use and move to Building Iroha section.

Note: If you plan to build 32-bit version of Iroha - you will need to install all the mentioned librares above prefixed
with x86 term instead of x64.

5.3 Build Process

5.3.1 Cloning the Repository

This step is currently unnecessary since you have already cloned Iroha in the previous step. But if you want, you can
clone the Iroha repository to the directory of your choice.

git clone -b master https://github.com/hyperledger/iroha
cd iroha

Hint: If you have installed the prerequisites with Docker, you don’t need to clone Iroha again, because when you
run run-iroha-dev.sh it attaches to Iroha source code folder. Feel free to edit source code files with your host
environment and build it within docker container.

34 Chapter 5. Building Iroha

https://github.com/hyperledger/iroha


Iroha handbook: installation, getting started, API, guides, and troubleshooting, Release

5.3.2 Building Iroha

To build Iroha, use these commands:

cmake -H. -Bbuild -DCMAKE_TOOLCHAIN_FILE=/path/to/vcpkg/scripts/buildsystems/vcpkg.
→˓cmake -G "Ninja"
cmake --build build --target irohad -- -j<number of threads>

Warning: If you want to use tests later, instead of building irohad target, you need to use this:

cmake -H. -Bbuild -DCMAKE_TOOLCHAIN_FILE=/path/to/vcpkg/scripts/buildsystems/vcpkg.
→˓cmake -G "Ninja"
cmake --build build --target all -- -j<number of threads>

Note: On Docker the path to a toolchain file is /opt/dependencies/scripts/buildsystems/vcpkg.
cmake. In other environment please use the path you have got in previous steps.

Number of threads will be defined differently depending on the platform:

• On Linux: via nproc.

• On MacOS: with sysctl -n hw.ncpu.

• On Windows: use echo %NUMBER_OF_PROCESSORS%.

Note: When building on Windows do not execute this from the Power Shell. Better use x64 Native tools command
prompt.

Now Iroha is built. Although, if you like, you can build it with additional parameters described below.

5.3.3 CMake Parameters

We use CMake to generate platform-dependent build files. It has numerous flags for configuring the final build. Note
that besides the listed parameters cmake’s variables can be useful as well. Also as long as this page can be deprecated
(or just not complete) you can browse custom flags via cmake -L, cmake-gui, or ccmake.

Hint: You can specify parameters at the cmake configuring stage (e.g cmake -DTESTING=ON).

5.3. Build Process 35



Iroha handbook: installation, getting started, API, guides, and troubleshooting, Release

Main Parameters

Parameter Possible val-
ues

De-
fault

Description

TESTING ON/OFF ON Enables or disables build of the tests
BENCHMARK-
ING

OFF Enables or disables build of the Google Benchmarks library

COVERAGE OFF Enables or disables lcov setting for code coverage generation
USE_LIBURSA OFF Enables usage of the HL Ursa cryptography instead of the stan-

dard one
USE_BURROW OFF Enables the HL Burrow EVM integration

Note: If you would like to use HL Ursa cryptography for your build, please install Rust in addition to other depen-
dencies. Learn more about HL Ursa integration here.

Packaging Specific Parameters

Parameter Possible values Default Description
PACKAGE_ZIP ON/OFF OFF Enables or disables zip packaging
PACKAGE_TGZ OFF Enables or disables tar.gz packaging
PACKAGE_RPM OFF Enables or disables rpm packaging
PACKAGE_DEB OFF Enables or disables deb packaging

5.3.4 Running Tests (optional)

First of all, please make sure you built Iroha correctly for the tests.

After building Iroha, it is a good idea to run tests to check the operability of the daemon. You can run tests with this
code:

cmake --build build --target test

Alternatively, you can run the following command in the build folder

cd build
ctest . --output-on-failure

Note: Some of the tests will fail without PostgreSQL storage running, so if you are not using scripts/
run-iroha-dev.sh script please run Docker container or create a local connection with following parameters:

docker run --name some-postgres \
-e POSTGRES_USER=postgres \
-e POSTGRES_PASSWORD=mysecretpassword \
-p 5432:5432 \
-d postgres:9.5 \
-c 'max_prepared_transactions=100'

36 Chapter 5. Building Iroha

https://www.rust-lang.org/tools/install
../integrations/index.html#hyperledger-ursa


CHAPTER 6

Configure

6.1 Configure TLS for client-peer communication (torii)

By default, client-peer communication is not encrypted. To enable it, you need to:

1. Generate a key/certificate pair for each peer

2. Distribute the certificate to all clients

3. Configure irohad to use these keys

4. [Re]start irohad

6.1.1 Generating keys

Keys must be presented in PEM format. To generate them you can use openssl:

$ openssl genpkey -algorithm rsa -out server.key
$ openssl req -new -key server.key -x509 -out server.crt

You can use any algorithm you want instead of rsa, as long as your openssl supports it. To find out which are
supported, you can use

$ openssl list-public-key-algorithms

If you need to use plain IP addresses to connect to the node, you need to specify subjectAltName in your server
certificate, for that you need to add a subjectAltName directive to v3_ca section of your openssl config before
generating the certificate. For example, for the default installation, /etc/ssl/openssl.cnf:

[ v3_ca ]
subjectAltName=IP:12.34.56.78

Fields in the certificate don’t really matter except for the Common Name (CN), it would be checked against the client’s
hostname, and TLS handshake will fail if they do not match (e.g. if you connect to example.com:50051, then irohad
at example.com would need to have example.com in common name of the certificate).

37



Iroha handbook: installation, getting started, API, guides, and troubleshooting, Release

6.1.2 Configuring irohad

To configure iroha to use your keys, you need to modify the torii_tls_params config parameter.

It should look like the following block:

"torii_tls_params": {
"port": 55552,
"key_pair_path": "/path/to/server"

}

port - set this to any port you would like (but usually you would want 55552)

key_pair_path - set this to full path to the key/certificate pair, such that if you have a key at /path/to/
server.key and a certificate at /path/to/server.crt, you need to specify torii_tls_keypair=/
path/to/server

In this section we will understand how to configure Iroha. Let’s take a look at example/config.sample

1 {
2 "block_store_path": "/tmp/block_store/",
3 "torii_port": 50051,
4 "torii_tls_params": {
5 "port": 55552,
6 "key_pair_path": "/path/to/the/keypair"
7 },
8 "internal_port": 10001,
9 "pg_opt": "host=localhost port=5432 user=postgres password=mysecretpassword

→˓dbname=iroha",
10 "database": {
11 "host": "localhost",
12 "port": 5432,
13 "user": "postgres",
14 "password": "mysecretpassword",
15 "working database": "iroha_data",
16 "maintenance database": "postgres"
17 },
18 "max_proposal_size": 10,
19 "proposal_delay": 5000,
20 "vote_delay": 5000,
21 "mst_enable" : false,
22 "mst_expiration_time" : 1440,
23 "max_rounds_delay": 3000,
24 "stale_stream_max_rounds": 2,
25 "utility_service": {
26 "ip": "127.0.0.1",
27 "port": 11001
28 }
29 }

As you can see, configuration file is a valid json structure. Let’s go line-by-line and understand what every parameter
means.

6.2 Deployment-specific parameters

• block_store_path sets path to the folder where blocks are stored.

• torii_port sets the port for external communications. Queries and transactions are sent here.

38 Chapter 6. Configure



Iroha handbook: installation, getting started, API, guides, and troubleshooting, Release

• internal_port sets the port for internal communications: ordering service, consensus and block loader.

• database (optional) is used to set the database configuration (see below)

• pg_opt (optional) is a deprecated way of setting credentials of PostgreSQL: hostname, port, username, pass-
word and database name. All data except the database name are mandatory. If database name is not provided,
the default one gets used, which is iroha_default.

• log is an optional parameter controlling log output verbosity and format (see below).

• utility_service (optional) endpoint for maintenance tasks. If present, must include ip address and port
to bind to. See shepherd docs <../maintenance/shepherd.html> for an example usage of maintenance endpoint.

There is also an optional torii_tls_params parameter, which could be included in the config to enable TLS
support for client communication.

There, port is the TCP port where the TLS server will be bound, and key_pair_path is the path to the keypair
in a format such that appending .crt to it would be the path to the PEM-encoded certificate, and appending .key
would be the path to the PEM-encoded private key for this certificate (e.g. if key_pair_path is "/path/to/
the/keypair" iroha would look for certificate located at "/path/to/the/keypair.crt" and key located
at "/path/to/the/keypair.key")

Warning: Configuration field pg_opt is deprecated, please use database section!

The database section overrides pg_opt when both are provided in configuration.

Both pg_opt and database fields are optional, but at least one must be specified.

The database section fields:

• host the host to use for PostgreSQL connection

• port the port to use for PostgreSQL connection

• user the user to use for PostgreSQL connection

• password the password to use for PostgreSQL connection

• working database is the name of database that will be used to store the world state view and optionally
blocks.

• maintenance database is the name of databse that will be used to maintain the working database. For
example, when iroha needs to create or drop its working database, it must use another database to connect to
PostgreSQL.

6.3 Environment-specific parameters

• max_proposal_size is the maximum amount of transactions that can be in one proposal, and as a result in
a single block as well. So, by changing this value you define the size of potential block. For a starter you can
stick to 10. However, we recommend to increase this number if you have a lot of transactions per second.

• proposal_delay is a timeout in milliseconds that a peer waits a response from the orderding service with a
proposal.

• vote_delay is a waiting time in milliseconds before sending vote to the next peer. Optimal value depends
heavily on the amount of Iroha peers in the network (higher amount of nodes requires longer vote_delay).
We recommend to start with 100-1000 milliseconds.

6.3. Environment-specific parameters 39



Iroha handbook: installation, getting started, API, guides, and troubleshooting, Release

• mst_enable enables or disables multisignature transaction network transport in Iroha. Note that MST engine
always works for any peer even when the flag is set to false. The flag only allows sharing information about
MST transactions among the peers.

• mst_expiration_time is an optional parameter specifying the time period in which a not fully signed
transaction (or a batch) is considered expired (in minutes). The default value is 1440.

• max_rounds_delay is an optional parameter specifying the maximum delay between two consensus rounds
(in milliseconds). The default value is 3000. When Iroha is idle, it gradually increases the delay to reduce CPU,
network and logging load. However too long delay may be unwanted when first transactions arrive after a long
idle time. This parameter allows users to find an optimal value in a tradeoff between resource consumption and
the delay of getting back to work after an idle period.

• stale_stream_max_rounds is an optional parameter specifying the maximum amount of rounds to keep
an open status stream while no status update is reported. The default value is 2. Increasing this value reduces
the amount of times a client must reconnect to track a transaction if for some reason it is not updated with new
rounds. However large values increase the average number of connected clients during each round.

• "initial_peers is an optional parameter specifying list of peers a node will use after startup instead of
peers from genesis block. It could be useful when you add a new node to the network where the most of initial
peers may become malicious. Peers list should be provided as a JSON array:

"initial_peers" : [{"address":"127.0.0.1:10001", "public_key":
"bddd58404d1315e0eb27902c5d7c8eb0602c16238f005773df406bc191308929"}]

6.4 Logging

In Iroha logging can be adjusted as granularly as you want. Each component has its own logging configuration with
properties inherited from its parent, able to be overridden through config file. This means all the component loggers
are organized in a tree with a single root. The relevant section of the configuration file contains the overriding values:

1 "log": {
2 "level": "info",
3 "patterns": {
4 "debug": "don't panic, it's %v.",
5 "error": "MAMA MIA! %v!!!"
6 },
7 "children": {
8 "KeysManager": {
9 "level": "trace"

10 },
11 "Irohad": {
12 "children": {
13 "Storage": {
14 "level": "trace",
15 "patterns": {
16 "debug": "thread %t: %v."
17 }
18 }
19 }
20 }
21 }
22 }

Every part of this config section is optional.

• level sets the verbosity. Available values are (in decreasing verbosity order):

40 Chapter 6. Configure



Iroha handbook: installation, getting started, API, guides, and troubleshooting, Release

– trace - print everything

– debug

– info

– warning

– error

– critical - print only critical messages

• patterns controls the formatting of each log string for different verbosity levels. Each value overrides the
less verbose levels too. So in the example above, the “don’t panic” pattern also applies to info and warning
levels, and the trace level pattern is the only one that is not initialized in the config (it will be set to default
hardcoded value).

• children describes the overrides of child nodes. The keys are the names of the components, and the values
have the same syntax and semantics as the root log configuration.

6.4. Logging 41



Iroha handbook: installation, getting started, API, guides, and troubleshooting, Release

42 Chapter 6. Configure



CHAPTER 7

Deploy

Hyperledger Iroha can be deployed in different ways, depending on the perspective and the purpose. There can be
either a single node deployed, or multiple nodes running in several containers on a local machine or spread across the
network — so pick any case you need. This page describes different scenarios and is intended to act as a how-to guide
for users, primarily trying out Iroha for the first time.

7.1 Running single instance

Generally, people want to run Iroha locally in order to try out the API and explore the capabilities. This can be done in
local or container environment (Docker). We will explore both possible cases, but in order to simplify peer components
deployment, it is advised to have Docker installed on your machine.

7.1.1 Local environment

By local environment, it is meant to have daemon process and Postgres deployed without any containers. This might
be helpful in cases when messing up with Docker is not preferred — generally a quick exploration of the features.

Run postgres server

In order to run postgres server locally, you should check postgres website and follow their description. Generally,
postgres server runs automatically when the system starts, but this should be checked in the configuration of the
system.

Run iroha daemon (irohad)

There is a list of preconditions which you should meet before proceeding:

• Postgres server is up and running

• irohad Iroha daemon binary is built and accessible in your system

43

https://www.postgresql.org/docs/current/static/server-start.html


Iroha handbook: installation, getting started, API, guides, and troubleshooting, Release

• The genesis block and configuration files were created

• Config file uses valid postgres connection settings

• A keypair for the peer is generated

• This is the first time you run the Iroha on this peer and you want to create new chain

Hint: Have you got something that is not the same as in the list of assumptions? Please, refer to the section Dealing
with troubles.

In case of valid assumptions, the only thing that remains is to launch the daemon process with following parameters:

Parameter Meaning
config configuration file, containing postgres connection and values to tune the system
genesis_block initial block in the ledger
keypair_name private and public key file names without file extension, used by peer to sign the blocks

Attention: Specifying a new genesis block using –genesis_block with blocks already present in ledger requires
–overwrite_ledger flag to be set. The daemon will fail otherwise.

An example of shell command, running Iroha daemon is

irohad --config example/config.sample --genesis_block example/genesis.block --keypair_
→˓name example/node0

Note: if you are running Iroha built with HL Ursa support please get the example keys and genesis block in
example/ursa-keys/

Attention: If you have stopped the daemon and want to use existing chain — you should not pass the genesis
block parameter.

7.1.2 Docker

In order to run Iroha peer as a single instance in Docker, you should pull the image for Iroha first:

docker pull hyperledger/iroha:latest

Hint: Use latest tag for latest stable release, and develop for latest development version

Then, you have to create an enviroment for the image to run without problems:

Create docker network

Containers for Postgres and Iroha should run in the same virtual network, in order to be available to each other.
Create a network, by typing following command (you can use any name for the network, but in the example, we use

44 Chapter 7. Deploy

../integrations/index.html#hyperledger-ursa


Iroha handbook: installation, getting started, API, guides, and troubleshooting, Release

iroha-network name):

docker network create iroha-network

Run Postgresql in a container

Similarly, run postgres server, attaching it to the network you have created before, and exposing ports for communica-
tion:

docker run --name some-postgres \
-e POSTGRES_USER=postgres \
-e POSTGRES_PASSWORD=mysecretpassword \
-p 5432:5432 \
--network=iroha-network \
-d postgres:9.5

Create volume for block storage

Before we run iroha daemon in the container, we should create persistent volume to store files, storing blocks for the
chain. It is done via the following command:

docker volume create blockstore

Running iroha daemon in docker container

There is a list of assumptions which you should review before proceeding:

• Postgres server is running on the same docker network

• There is a folder, containing config file and keypair for a single node

• This is the first time you run the Iroha on this peer and you want to create new chain

If they are met, you can move forward with the following command:

docker run --name iroha \
# External port
-p 50051:50051 \
# Folder with configuration files
-v ~/Developer/iroha/example:/opt/iroha_data \
# Blockstore volume
-v blockstore:/tmp/block_store \
# Postgres settings
-e POSTGRES_HOST='some-postgres' \
-e POSTGRES_PORT='5432' \
-e POSTGRES_PASSWORD='mysecretpassword' \
-e POSTGRES_USER='postgres' \
# Node keypair name
-e KEY='node0' \
# Docker network name
--network=iroha-network \
hyperledger/iroha:latest

7.1. Running single instance 45



Iroha handbook: installation, getting started, API, guides, and troubleshooting, Release

7.2 Running multiple instances (peer network)

In order to set up a peer network, one should follow routines, described in this section. In this version, we support
manual deployment and automated by Ansible Playbook. Choose an option, that meets your security criteria and other
needs.

7.2.1 Manually

By manual deployment, we mean that Iroha peer network is set up without automated assistance. It is similar to the
process of running a single local instance, although the difference is the genesis block includes more than a single peer.
In order to form a block, which includes more than a single peer, or requires customization for your needs, please take
a look at :ref:‘deploy_troubles section.

7.2.2 Automated

Follow this guide

7.3 Deploying Iroha on Kubernetes cluster

Warning: Some parts of this guide are deprecated. Proceed at your own discretion.

By following this guide you will be able to deploy a Kubernetes cluster from scratch on AWS cloud using Terraform
and Kubespray, and deploy a network of Iroha nodes on it.

7.3.1 Prerequisites

• machine running Linux (tested on Ubuntu 16.04) or MacOS

• Python 3.3+

• boto3

• Ansible 2.4+

• ed25519-cli utility for key generation. Statically linked binary (for x86_64 platform) can be found in
deploy/ansible/playbooks/iroha-k8s/scripts directory. You may need to compile it yourself.

You do not need the items below if you already have a working Kubernetes (k8s) cluster. You can skip to Generating
Iroha configs chapter.

• Terraform 0.11.8+

• AWS account for deploying a k8s cluster on EC2

7.3.2 Preparation

You need to obtain AWS key for managing resources. We recommend to create a separate IAM user for that. Go
to your AWS console, head to “My Security Credentials” menu and create a user in “Users” section. Assign “Ama-
zonEC2FullAccess” and “AmazonVPCFullAccess” policies to that user. Click “Create access key” on Security cre-

46 Chapter 7. Deploy

https://github.com/hyperledger/iroha-deploy/blob/master/ansible/roles/iroha-docker/README.md
https://github.com/Warchant/ed25519-cli


Iroha handbook: installation, getting started, API, guides, and troubleshooting, Release

dentials tab. Take a note for values of Access key ID and Secret key. Set these values as environment variables in your
console:

export AWS_ACCESS_KEY_ID='<The value of Access key ID>'
export AWS_SECRET_ACCESS_KEY='<The value of Secret key>'

Checkout the source tree from Github:

git clone https://github.com/hyperledger/iroha && cd iroha

7.3.3 Setting up cloud infrastructure

We use Hashicorp’s Terraform infrastructure management tool for automated deployment of AWS EC2 nodes in
multiple regions. Kubespray Ansible module is used for setting up a production-grade k8s cluster.

Terraform module creates 3 AWS instances in 3 different regions: eu-west-1, eu-west-2, eu-west-3 by default. Instance
type is c5.large. There is a separate VPC created in every region. All created VPCs are then connected using VPC
peering connection. That is to create a seamless network for k8s cluster.

There are several configurable options: number of nodes in each region and its role in k8s cluster (kube-master or
kube-node). They can be set either in variables.tf file or via environment variables (using the same variable name
but prefixed with TF_VAR. See more in Terraform docs). More options can be configured by tuning parameters in
module’s variables.tf file.

You must set up SSH key in deploy/tf/k8s/variables.tf as well. Replace public key with your own. It will added on
each created EC2 instance.

Navigate to deploy/tf/k8s directory. Terraform needs to download required modules first:

pushd deploy/tf/k8s && terraform init

Then run module execution:

terraform apply && popd

Review the execution plan and type yes to approve. Upon completion you should see an output similar to this:

Apply complete! Resources: 39 added, 0 changed, 0 destroyed.

We are now ready to deploy k8s cluster. Wait a couple of minutes before instances are initialized.

7.3.4 Setting up k8s cluster

There is an Ansible role for setting up k8s cluster. It is an external module called Kubespray. It is stored as a submodule
in Hyperledger Iroha repository. This means it needs to be initialized first:

git submodule init && git submodule update

This command will download Kubespray from master repository.

Install required dependencies:

pip3 install -r deploy/ansible/kubespray/requirements.txt

Proceed to actual cluster deployment. Make sure you replaced key-file parameter with an actual path to SSH private
key that was used previously during Terraform configuration. REGIONS variable corresponds to default list of regions

7.3. Deploying Iroha on Kubernetes cluster 47

https://github.com/kubernetes-incubator/kubespray
https://www.terraform.io/intro/getting-started/variables.html#from-environment-variables


Iroha handbook: installation, getting started, API, guides, and troubleshooting, Release

used on a previous step. Modify it accordingly in case you added or removed any. Inventory file is a Python script that
returns Ansible-compatible list of hosts filtered by tag.

pushd deploy/ansible && REGIONS="eu-west-1,eu-west-2,eu-west-3" VPC_VISIBILITY="public
→˓" ansible-playbook -u ubuntu -b --ssh-extra-args="-o IdentitiesOnly=yes" --key-file=
→˓<PATH_TO_SSH_KEY> -i inventory/kubespray-aws-inventory.py kubespray/cluster.yml
popd

Upon successful completion you will have working k8s cluster.

7.3.5 Generating Iroha configs

In order for Iroha to work properly it requires to generate a key pair for each node, genesis block and configuration
file. This is usually a tedious and error-prone procedure, especially for a large number of nodes. We automated it with
Ansible role. You can skip to Deploying Iroha on the cluster chapter if you want to quick start using default configs
for k8s cluster with 4 Iroha replicas.

Generate configuration files for N Iroha nodes. replicas variable controls the number of N:

pushd deploy/ansible && ansible-playbook -e 'replicas=7' playbooks/iroha-k8s/iroha-
→˓deploy.yml
popd

You should find files created in deploy/ansible/roles/iroha-k8s/files/conf.

7.3.6 Deploying Iroha on the cluster

Make sure you have configuration files in deploy/ansible/roles/iroha-k8s/files. Specifically, non-empty conf directory
and k8s-iroha.yaml file.

There are two options for managing k8s cluster: logging into either of master node and executing commands there or
configure remote management. We will cover the second option here as the first one is trivial.

In case you set up cluster using Kubespray, you can find admin.conf file on either of master node in /etc/kubernetes
directory. Copy this file on the control machine (the one you will be running kubectl command from). Make sure
server parameter in this file points to external IP address or DNS name of a master node. Usually, there is a private IP
address of the node (in case of AWS). Make sure kubectl utility is installed (check out the docs for instructions).

Replace the default kubectl configuration:

export KUBECONFIG=<PATH_TO_admin.conf>

We can now control the remote k8s cluster

k8s-iroha.yaml pod specification file requires the creation of a config-map first. This is a special resource that is
mounted in the init container of each pod, and contains the configuration and genesis block files required to run Iroha.

kubectl create configmap iroha-config --from-file=deploy/ansible/roles/iroha-k8s/
→˓files/conf/

Each peer will have their public and private keys stored in a Kubernetes secret which is mounted in the init container
and copied over for Iroha to use. Peers will only be able read their assigned secret when running Iroha.

kubectl create -f deploy/ansible/roles/iroha-k8s/files/k8s-peer-keys.yaml

Deploy Iroha network pod specification:

48 Chapter 7. Deploy

https://kubernetes.io/docs/tasks/tools/install-kubectl/


Iroha handbook: installation, getting started, API, guides, and troubleshooting, Release

kubectl create -f deploy/ansible/roles/iroha-k8s/files/k8s-iroha.yaml

Wait a moment before each node downloads and starts Docker containers. Executing kubectl get pods command
should eventually return a list of deployed pods each in Running state.

Hint: Pods do not expose ports externally. You need to connect to Iroha instance by its hostname (iroha-0, iroha-1,
etc). For that you have to have a running pod in the same network.

7.4 Dealing with troubles

—”Please, help me, because I. . . ”

7.4.1 Do not have Iroha daemon binary

You can build Iroha daemon binary from sources. You can get binaries here

7.4.2 Do not have a config file

Check how to create a configuration file by following this link

7.4.3 Do not have a genesis block

Create genesis block by generating it via iroha-cli or manually, using the example and checking out permissions

7.4.4 Do not have a keypair for a peer

In order to create a keypair for an account or a peer, use iroha-cli binary by passing the name of the peer with
–new_account option. For example:

./iroha-cli --account_name newuser@test --new_account

7.4. Dealing with troubles 49

https://github.com/hyperledger/iroha/releases
../configure/index.html
https://github.com/hyperledger/iroha/blob/master/example/genesis.block
../develop/api/permissions.html


Iroha handbook: installation, getting started, API, guides, and troubleshooting, Release

50 Chapter 7. Deploy



CHAPTER 8

Maintain

Hardware requirements, deployment process in details, aspects related to security, configuration files — all of the
listed is explained in this separate section, helpful for DevOps engineers or those who are digging deeper in the system
capabilities.

8.1 Restarting Iroha node with existing WSV

Previously, in cases when you had to update a node or it shut down for some reason, there was only one option of
re-reading all of the blocks to recreate consistent world state view (aka WSV). To start up a node quicker, it is now
possible to reuse an existing WSV database after a quick check. For that, hash of the top block and the height of
the blockstorage are included in the WSV.

Warning: It is up to Administrators of the node to make sure the WSV is not edited manually – only by Iroha or
the migration script. Manual editing or editing of the migration script not following a trustworthy guideline can
lead to inconsistent network. Only do so at your own risk (we warned you).

Although it can be a great idea for some of the cases, but please consider that there are certain specifics of reusing
WSV, compared to restoring it from blockstorage:

Trust point
Reusing WSV: we need to rely on both blockstorage and WSV.
Restore WSV from block storage: we trust only the genesis block.

Integrity
Reusing WSV: blockstorage and WSV must match each other! Iroha will not check for that.
Restore WSV from block storage: Iroha will check every block, while restoring WSV. Any error in blockstorage
will be found (except genesis block, of course). WSV is guaranteed to match the blockstorage.

51

../concepts_architecture/architecture.html#world-state-view


Iroha handbook: installation, getting started, API, guides, and troubleshooting, Release

Time
Reusing WSV: Iroha is almost immediately ready to operate in the network.
Restore WSV from block storage: the larger blockstorage - the longer it takes to restore it and begin operation.

Note: If the local ledger that shut down has more blocks than it should and the correct WSV is among them - it is ok,
Iroha will take the WSV of the correct block. If blocks are less than should be – the option of reusing WSV will not
work for you. Please, restore it from blocks.

8.1.1 Enabling WSV Reuse

If you want to reuse WSV state, start Iroha with –reuse_state flag. Given this flag, Iroha will not reset or overwrite the
state database if it fails to start for whatever reason.

8.1.2 Enabling WSV Reuse

If you want to reuse WSV state, start Iroha with –reuse_state flag. Given this flag, Iroha will not reset or overwrite the
state database if it fails to start for whatever reason.

8.1.3 State Database Schema version

When reusing existing WSV, Iroha performs a schema version compatibility check. It will not start or somehow alter
the database, if its schema is not compatible with the Iroha in use.

If your schema was created by Iroha of version v1.1.1 or lower, most likely it does not include the version information.
In this case you need to add it manually. You are encouraged to use our script for this purpose, it is located here. To
forcefully (i.e. without any migration process) set your schema version, launch the script with –force_schema_version
flag and pass the version of Iroha binary that was used to create your schema.

Warning: Before forcefully writing the schema version numbers, double check the version of irohad that created
the schema. No checks are performed when you force schema numbers, hence it is easy to break the state database
in the future (during the next migration).

8.1.4 Changing Iroha version. Migration.

In case you want to change Iroha version while keeping the WSV, you are encouraged to perform a migration. Al-
though it might be unnecessary (Iroha will refuse to start if the schema is incompatible), as a general rule, we improve
the schema with each version and migration might be a good idea for a better performance. You are encouraged to
perform a database backup before migration using standard PostgreSQL guidelines for that.

To perform migration, please use our script.

It will load the schema information from the database and match it with migration steps (by default, migration scenarios
are defined in migration_data directory in the same folder as the script). Then it will find all migration paths that
will transition your database to the desired version and ask you to choose one.

See also:

Here are some details about different migration cases and examples you can check out to perform migration

52 Chapter 8. Maintain

https://github.com/hyperledger/iroha-state-migration-tool/blob/master/state_migration.py
https://www.postgresql.org/docs/current/backup.html
https://github.com/hyperledger/iroha-state-migration-tool/blob/master/state_migration.py
https://github.com/hyperledger/iroha-state-migration-tool/blob/master/README.md


Iroha handbook: installation, getting started, API, guides, and troubleshooting, Release

8.2 Iroha installation security tips

This guide is intended to secure Iroha installation. Most of the steps from this guide may seem obvious but it helps to
avoid possible security problems in the future.

8.2.1 Physical security

In case the servers are located locally (physically accessible), a number of security measures have to be applied. Skip
these steps if cloud hosting is used.

Establish organisational policy and/or access control system such that only authorized personnel has access to the
server room. Next, set BIOS/firmware password and configure boot order to prevent unauthorized booting from
alternate media. Make sure the bootloader is password protected if there is such a functionality. Also, it is good to
have a CCTV monitoring in place.

8.2.2 Deployment

First, verify that official repository is used for downloading source code and Docker images. Change any default pass-
words that are used during installation, e.g., password for connecting to postgres. Iroha repository contains examples
of private and public keys - never use it in production. Moreover, verify that new keypairs are generated in a safe
environment and only administrator has access to those keypairs (or at least minimise the number of people). After
deploying keys to Iroha peers delete private keys from the host that was used to perform deployment, i.e. private keys
should reside only inside Iroha peers. Create an encrypted backup of private keys before deleting them and limit the
access to it.

8.2.3 Network configuration

Iroha listens on ports 50051 and 10001, and optionally 55552, if TLS is enabled. Firewall settings must allow incom-
ing/outgoing connections to/from these ports. If possible, disable or remove any other network services with listening
ports (FTP, DNS, LDAP, SMB, DHCP, NFS, SNMP, etc). Ideally, Iroha should be as much isolated as possible in
terms of networking.

You can enable TLS on torii ports if you would like to encrypt client-peer communication.

If you don’t use traffic encryption, we strongly recommend using VPN or Calico for setting up Docker overlay network,
i.e. any mechanism that allows encrypting communication between peers. Docker swarm encrypts communications
by default, but remember to open necessary ports in the firewall configuration. In case VPN is used, verify that VPN
key is unavailable to other users.

If SSH is used, disable root login. Apart from that, disable password authentication and use only keys. It might be
helpful to set up SSH log level to INFO as well.

If IPv6 is not used, it might be a good idea to disable it.

8.2.4 Updates

Install the latest operating system security patches and update it regularly. If Iroha is running in Docker containers,
update Docker regularly. While being optional, it is considered a good practice to test updates on a separate server
before installing to production.

8.2. Iroha installation security tips 53

https://github.com/hyperledger/iroha
https://hub.docker.com/r/hyperledger/iroha


Iroha handbook: installation, getting started, API, guides, and troubleshooting, Release

8.2.5 Logging and monitoring

• Collect and ship logs to a dedicated machine using an agent (e.g., Filebeat).

• Collect logs from all Iroha peers in a central point (e.g., Logstash).

• Transfer logging and monitoring information via an encrypted channel (e.g., https).

• Set up an authentication mechanism to prevent third parties from accessing logs.

• Set up an authentication mechanism to prevent third parties from submitting logs.

• Log all administrator access.

8.2.6 OS hardening

The following steps assume Docker is used for running Iroha.

• Enable and configure Docker Content Trust.

• Allow only trusted users to control Docker daemon.

• Set up a limit for Docker container resources.

8.3 Shepherd

Shepherd is a command line utility that helps to perform maintenance tasks with running irohad daemon.

8.3.1 Prerequisites

To access irohad daemon, utility service has to be configured in it. See the configuration details.

Next, when invoking shepherd, pass the --irohad command line argument with address and port of irohad utility
service:

./shepherd --irohad 127.0.0.1:11001 <...>

8.3.2 Supported actions

These are the things that you can do with shepherd by specifying additional command line arguments.

Graceful shutdown

How did you stop iroha before? What, did you really really kill it? Oh, please never do that again, it is not polite and
nice!

./shepherd <...> --shutdown

With --shutdown argument, shepherd will politely ask Iroha to stop.

54 Chapter 8. Maintain



Iroha handbook: installation, getting started, API, guides, and troubleshooting, Release

Watch it work

Widely considered one of the greatest pleasures is watching others work. With shepherd you can watch Iroha working!

./shepherd <...> --status

This will subscribe for work cycle status updates. You will get unambiguous messages when the daemon is starting,
operating, terminating or has just stopped.

8.3.3 Other parameters

You can also set the logging level:

./shepherd <...> --verbosity debug <...>

Supported values are trace, debug, info, warning, error and critical.

8.3. Shepherd 55



Iroha handbook: installation, getting started, API, guides, and troubleshooting, Release

56 Chapter 8. Maintain



CHAPTER 9

Develop on Iroha

Iroha is a great backend for your applications working on distributed ledgers. In this section we will cover the instru-
ments (API reference and libraries) and cases you could use for that.

You can also check out The Borsello App – it is a wallet for Android & iOS along with a web browser application
contributed by Claudio. It might help you understand the general idea of how frontend can be used with HL Iroha.

9.1 Client Libraries

9.1.1 Java Library

Client library of Iroha written completely in Java 8, which includes:

• SDK to work with Iroha API

• async wrapper over Iroha API

• testcontainers wrapper for convenient integration testing with Iroha

• examples in Java and Groovy

Both options are described in the following sections. Please check readme file in project’s repo.

How to use

• JitPack

• GitHub

Example code

57

https://github.com/claudiocandio/borsello
https://github.com/claudiocandio
https://github.com/hyperledger/iroha-java
https://jitpack.io/#hyperledger/iroha-java
https://github.com/hyperledger/iroha-java


Iroha handbook: installation, getting started, API, guides, and troubleshooting, Release

import iroha.protocol.BlockOuterClass;
import iroha.protocol.Primitive.RolePermission;
import java.math.BigDecimal;
import java.security.KeyPair;
import java.util.Arrays;
import jp.co.soramitsu.crypto.ed25519.Ed25519Sha3;
import jp.co.soramitsu.iroha.testcontainers.IrohaContainer;
import jp.co.soramitsu.iroha.testcontainers.PeerConfig;
import jp.co.soramitsu.iroha.testcontainers.detail.GenesisBlockBuilder;
import lombok.val;

public class Example1 {

private static final String bankDomain = "bank";
private static final String userRole = "user";
private static final String usdName = "usd";

private static final Ed25519Sha3 crypto = new Ed25519Sha3();

private static final KeyPair peerKeypair = crypto.generateKeypair();

private static final KeyPair useraKeypair = crypto.generateKeypair();
private static final KeyPair userbKeypair = crypto.generateKeypair();

private static String user(String name) {
return String.format("%s@%s", name, bankDomain);

}

private static final String usd = String.format("%s#%s", usdName, bankDomain);

/**
* <pre>

* Our initial state cosists of:

* - domain "bank", with default role "user" - can transfer assets and can query
→˓their amount

* - asset usd#bank with precision 2

* - user_a@bank, which has 100 usd

* - user_b@bank, which has 0 usd

* </pre>

*/
private static BlockOuterClass.Block getGenesisBlock() {
return new GenesisBlockBuilder()

// first transaction
.addTransaction(

// transactions in genesis block can have no creator
Transaction.builder(null)

// by default peer is listening on port 10001
.addPeer("0.0.0.0:10001", peerKeypair.getPublic())
// create default "user" role
.createRole(userRole,

Arrays.asList(
RolePermission.can_transfer,
RolePermission.can_get_my_acc_ast,
RolePermission.can_get_my_txs,
RolePermission.can_receive

)
)
.createDomain(bankDomain, userRole)

58 Chapter 9. Develop on Iroha



Iroha handbook: installation, getting started, API, guides, and troubleshooting, Release

// create user A
.createAccount("user_a", bankDomain, useraKeypair.getPublic())
// create user B
.createAccount("user_b", bankDomain, userbKeypair.getPublic())
// create usd#bank with precision 2
.createAsset(usdName, bankDomain, 2)
// transactions in genesis block can be unsigned
.build() // returns ipj model Transaction
.build() // returns unsigned protobuf Transaction

)
// we want to increase user_a balance by 100 usd
.addTransaction(

Transaction.builder(user("user_a"))
.addAssetQuantity(usd, new BigDecimal("100"))
.build()
.build()

)
.build();

}

public static PeerConfig getPeerConfig() {
PeerConfig config = PeerConfig.builder()

.genesisBlock(getGenesisBlock())

.build();

// don't forget to add peer keypair to config
config.withPeerKeyPair(peerKeypair);

return config;
}

/**
* Custom facade over GRPC Query

*/
public static int getBalance(IrohaAPI api, String userId, KeyPair keyPair) {
// build protobuf query, sign it
val q = Query.builder(userId, 1)

.getAccountAssets(userId)

.buildSigned(keyPair);

// execute query, get response
val res = api.query(q);

// get list of assets from our response
val assets = res.getAccountAssetsResponse().getAccountAssetsList();

// find usd asset
val assetUsdOptional = assets

.stream()

.filter(a -> a.getAssetId().equals(usd))

.findFirst();

// numbers are small, so we use int here for simplicity
return assetUsdOptional

.map(a -> Integer.parseInt(a.getBalance()))

.orElse(0);
}

9.1. Client Libraries 59



Iroha handbook: installation, getting started, API, guides, and troubleshooting, Release

public static void main(String[] args) {
// for simplicity, we will create Iroha peer in place
IrohaContainer iroha = new IrohaContainer()

.withPeerConfig(getPeerConfig());

// start the peer. blocking call
iroha.start();

// create API wrapper
IrohaAPI api = new IrohaAPI(iroha.getToriiAddress());

// transfer 100 usd from user_a to user_b
val tx = Transaction.builder("user_a@bank")

.transferAsset("user_a@bank", "user_b@bank", usd, "For pizza", "10")

.sign(useraKeypair)

.build();

// create transaction observer
// here you can specify any kind of handlers on transaction statuses
val observer = TransactionStatusObserver.builder()

// executed when stateless or stateful validation is failed
.onTransactionFailed(t -> System.out.println(String.format(

"transaction %s failed with msg: %s",
t.getTxHash(),
t.getErrOrCmdName()

)))
// executed when got any exception in handlers or grpc
.onError(e -> System.out.println("Failed with exception: " + e))
// executed when we receive "committed" status
.onTransactionCommitted((t) -> System.out.println("Committed :)"))
// executed when transfer is complete (failed or succeed) and observable is

→˓closed
.onComplete(() -> System.out.println("Complete"))
.build();

// blocking send.
// use .subscribe() for async sending
api.transaction(tx)

.blockingSubscribe(observer);

/// now lets query balances
val balanceUserA = getBalance(api, user("user_a"), useraKeypair);
val balanceUserB = getBalance(api, user("user_b"), userbKeypair);

// ensure we got correct balances
assert balanceUserA == 90;
assert balanceUserB == 10;

}
}

9.1.2 Javascript library

This library provides functions which will help you to interact with Hyperledger Iroha from your JS program.

60 Chapter 9. Develop on Iroha



Iroha handbook: installation, getting started, API, guides, and troubleshooting, Release

Installation

Via npm

$ npm i iroha-helpers

Via yarn

$ yarn add iroha-helpers

Commands

For usage of any command you need to provide commandOptions as a first argument.

const commandOptions = {
privateKeys: ['f101537e319568c765b2cc89698325604991dca57b9716b58016b253506cab70'], /

→˓/ Array of private keys in hex format
creatorAccountId: '', // Account id, ex. admin@test
quorum: 1,
commandService: null

}

As second argument you need to provide object that contains properties for required command.

// Example usage of setAccountDetail

const commandService = new CommandService_v1Client(
'127.0.0.1:50051',
grpc.credentials.createInsecure()

)

const adminPriv = 'f101537e319568c765b2cc89698325604991dca57b9716b58016b253506cab70'

commands.setAccountDetail({
privateKeys: [adminPriv],
creatorAccountId: 'admin@test',
quorum: 1,
commandService

}, {
accountId: 'admin@test',
key: 'jason',
value: 'statham'

})

Queries

For usage of any query you need to provide queryOptions as a first argument.

const queryOptions = {
privateKey: 'f101537e319568c765b2cc89698325604991dca57b9716b58016b253506cab70', //

→˓Private key in hex format
creatorAccountId: '', // Account id, ex. admin@test
queryService: null

}

9.1. Client Libraries 61



Iroha handbook: installation, getting started, API, guides, and troubleshooting, Release

As second argument you need to provide object that contains properties for required query.

// Example usage of getAccountDetail

const queryService = new QueryService_v1Client(
'127.0.0.1:50051',
grpc.credentials.createInsecure()

)

const adminPriv = 'f101537e319568c765b2cc89698325604991dca57b9716b58016b253506cab70'

queries.getAccountDetail({
privateKey: adminPriv,
creatorAccountId: 'admin@test',
queryService

}, {
accountId: 'admin@test'

})

Example code

import grpc from 'grpc'
import {
QueryService_v1Client,
CommandService_v1Client

} from '../iroha-helpers/lib/proto/endpoint_grpc_pb'
import { commands, queries } from 'iroha-helpers'

const IROHA_ADDRESS = 'localhost:50051'
const adminPriv =

'f101537e319568c765b2cc89698325604991dca57b9716b58016b253506cab70'

const commandService = new CommandService_v1Client(
IROHA_ADDRESS,
grpc.credentials.createInsecure()

)

const queryService = new QueryService_v1Client(
IROHA_ADDRESS,
grpc.credentials.createInsecure()

)

Promise.all([
commands.setAccountDetail({
privateKeys: [adminPriv],
creatorAccountId: 'admin@test',
quorum: 1,
commandService

}, {
accountId: 'admin@test',
key: 'jason',
value: 'statham'

}),
queries.getAccountDetail({
privateKey: adminPriv,
creatorAccountId: 'admin@test',
queryService

62 Chapter 9. Develop on Iroha



Iroha handbook: installation, getting started, API, guides, and troubleshooting, Release

}, {
accountId: 'admin@test'

})
])

.then(a => console.log(a))

.catch(e => console.error(e))

9.1.3 Python Library

Where to Get

A supported python library for Iroha is available at its own Hyperledger iroha-python repo. Python 3+ is supported.

You can also install Python library via pip:

pip install iroha

Example Code

from iroha import Iroha, IrohaCrypto, IrohaGrpc

iroha = Iroha('alice@test')
net = IrohaGrpc('127.0.0.1:50051')

alice_key = IrohaCrypto.private_key()
alice_tx = iroha.transaction(
[iroha.command(

'TransferAsset',
src_account_id='alice@test',
dest_account_id='bob@test',
asset_id='bitcoin#test',
description='test',
amount='1'

)]
)

IrohaCrypto.sign_transaction(alice_tx, alice_key)
net.send_tx(alice_tx)

for status in net.tx_status_stream(alice_tx):
print(status)

9.1.4 iOS Swift Library

The library was created to provide convenient interface for iOS applications to communicate with Iroha blockchain
including sending transactions/query, streaming transaction statuses and block commits.

Where to get

Iroha iOS library is available through CocoaPods. To install it, simply add the following line to your Podfile:

9.1. Client Libraries 63

https://github.com/hyperledger/iroha-python/


Iroha handbook: installation, getting started, API, guides, and troubleshooting, Release

pod 'IrohaCommunication'

Also you can download the source code for the library in its repo

How to use

For new Iroha users we recommend to checkout iOS example project. It tries to establish connection with Iroha peer
which should be also run locally on your computer to create new account and send some asset quantity to it. To run
the project, please, go through steps below:

• Follow instructions from Iroha documentation to setup and run iroha peer in Docker container.

• Clone iroha-ios repository.

• cd Example directory and run pod install.

• Open IrohaCommunication.xcworkspace in XCode

• Build and Run IrohaExample target.

• Consider logs to see if the scenario completed successfully.

Feel free to experiment with example project and don’t hesitate to ask any questions in Rocket.Chat.

9.2 Key Pair Format

Iroha uses key pairs (.pub and .priv keys) to sign transactions – every account has at least 1 pair. Some accounts (if
quorum is more than 1) might have more Signatories that sign transactions – and each Signatory has a pair of keys.
Cryptographic algorithms use those keys – and in Iroha we provide you with a choice – which algorithms to use.

9.2.1 Supported Crypto Algorithms

Natively, HL Iroha uses a custom algorithm – Ed25519 with SHA-3. These keys are supported by all versions of Iroha,
including the old ones. But as we all know, we need more universal options as well – that is why Iroha has HL Ursa
integration – it is a library with different crypto algorithms, that allows to work with Iroha using more mainstream
keys. Ursa provides Iroha with support of standard Ed25519 with SHA-2 algorithm.

Public Keys

To provide easy solution that would allow using different algorithms without “breaking” backward compatibility, we
introduced multihash format for public keys in Iroha. You can learn more about multihash here.

Generally, to use keys, different from the native SHA-3 ed25519 keys, you will need to bring them to this format:

<varint key type code><varint key size in bytes><actual key bytes>

Note: In multihash, varints are the Most Significant Bit unsigned varints (also called base-128 varints).

If Iroha receives a standard public key of 32 bytes, it will treat is as a native Iroha key. If it receives a multihash public
key, it will treat it based on the table below.

Right now, Iroha “understands” only one multihash key format:

64 Chapter 9. Develop on Iroha

https://github.com/hyperledger/iroha-ios
https://github.com/hyperledger/iroha-ios/tree/master/Example
https://github.com/hyperledger/iroha-ios
../concepts_architecture/glossary.html#account
../concepts_architecture/glossary.html#quorum
../concepts_architecture/glossary.html#signatory
../integrations/index.html#hyperledger-ursa
../integrations/index.html#hyperledger-ursa
https://github.com/multiformats/multihash


Iroha handbook: installation, getting started, API, guides, and troubleshooting, Release

Name Tag Code Description
ed25519-pub key 0xed Ed25519 public key

Examples of public keys in Iroha:

type code length data what Iroha recognises
multihash key ED01 20 62646464c35383430b. . . ed25519/sha2
raw 32 byte key – – 716fe505f69f18511a. . . ed25519/sha3

Note that code 0xED is encoded as ED01 by the rules of multihash format.

Private Keys

Private keys in Ursa are represented by concatenation of a private key and a public key – without multihash prefixes.

9.3 Iroha API reference

In API section we will take a look at building blocks of an application interacting with Iroha. We will overview
commands and queries that the system has, and the set of client libraries encompassing transport and application layer
logic.

Iroha API follows command-query separation principle.

Communication between Iroha peer and a client application is maintained via gRPC framework. Client applications
should follow described protocol and form transactions accordingly to their description.

9.3.1 Commands

A command changes the state, called World State View, by performing an action over an entity (asset, account) in the
system. Any command should be included in a transaction to perform an action.

Add asset quantity

Purpose

The purpose of add asset quantity command is to increase the quantity of an asset on account of transaction creator.
Use case scenario is to increase the number of a mutable asset in the system, which can act as a claim on a commodity
(e.g. money, gold, etc.)

Schema

message AddAssetQuantity {
string asset_id = 1;
string amount = 2;

}

9.3. Iroha API reference 65

https://en.wikipedia.org/wiki/Command%E2%80%93query_separation
https://grpc.io/about/
../concepts_architecture/glossary.html#transaction


Iroha handbook: installation, getting started, API, guides, and troubleshooting, Release

Note: Please note that due to a known issue you would not get any exception if you pass invalid precision value.
Valid range is: 0 <= precision <= 255

Structure

Field Description Constraint Example
Asset ID id of the asset <asset_name>#<domain_id>usd#morgan
Amount positive amount of the asset to add > 0 200.02

Validation

1. Asset and account should exist

2. Added quantity precision should be equal to asset precision

3. Creator of a transaction should have a role which has permissions for issuing assets

Possible Stateful Validation Errors

Code Error Name Description How to solve
1 Could not add

asset quantity
Internal error happened Try again or contact developers

2 No such permis-
sions

Command’s creator does not have per-
mission to add asset quantity

Grant the necessary permission

3 No such asset Cannot find asset with such name or
such precision

Make sure asset id and precision are correct

4 Summation over-
flow

Resulting asset quantity is greater than
the system can support

Make sure that resulting quantity is less than
2^256 / 10^asset_precision

Add peer

Purpose

The purpose of add peer command is to write into ledger the fact of peer addition into the peer network. After a
transaction with AddPeer has been committed, consensus and synchronization components will start using it.

Schema

message Peer {
string address = 1;
bytes peer_key = 2; // hex string

}

message AddPeer {
Peer peer = 1;

}

66 Chapter 9. Develop on Iroha



Iroha handbook: installation, getting started, API, guides, and troubleshooting, Release

Structure

Field Description Constraint Example
Address resolvable address in network (IPv4,

IPv6, domain name, etc.)
should be
resolvable

192.168.1.1:50541

Peer key peer public key, which is used in
consensus algorithm to sign-off vote,
commit, reject messages

ed25519
public key

292a8714694095edce6be799398ed5d6244cd7be37eb813106b217d850d261f2

Validation

1. Peer key is unique (there is no other peer with such public key)

2. Creator of the transaction has a role which has CanAddPeer permission

3. Such network address has not been already added

Possible Stateful Validation Errors

Code Error Name Description How to solve
1 Could not add peer Internal error happened Try again or contact devel-

opers
2 No such permis-

sions
Command’s creator does not have permission to add
peer

Grant the necessary permis-
sion

Add signatory

Purpose

The purpose of add signatory command is to add an identifier to the account. Such identifier is a public key of another
device or a public key of another user.

Schema

message AddSignatory {
string account_id = 1;
bytes public_key = 2;

}

Structure

Field Description Constraint Example
Account ID Account to which to add signatory <account_name>@<domain_id>makoto@soramitsu
Public key Signatory to add to account ed25519 public key 359f925e4eeecfdd6aa1abc0b79a6a121a5dd63bb612b603247ea4f8ad160156

9.3. Iroha API reference 67

mailto:makoto@soramitsu


Iroha handbook: installation, getting started, API, guides, and troubleshooting, Release

Validation

Two cases:

Case 1. Transaction creator wants to add a signatory to his or her account, having permission CanAddSig-
natory

Case 2. CanAddSignatory was granted to transaction creator

Possible Stateful Validation Errors

Code Error Name Description How to solve
1 Could not add sig-

natory
Internal error happened Try again or contact devel-

opers
2 No such permis-

sions
Command’s creator does not have permission to add
signatory

Grant the necessary per-
mission

3 No such account Cannot find account to add signatory to Make sure account id is
correct

4 Signatory already
exists

Account already has such signatory attached Choose another signatory

Append role

Purpose

The purpose of append role command is to promote an account to some created role in the system, where a role is a
set of permissions account has to perform an action (command or query).

Schema

message AppendRole {
string account_id = 1;
string role_name = 2;

}

Structure

Field Description Constraint Example
Account ID id or account to append role to already existent makoto@soramitsu
Role name name of already created role already existent MoneyCreator

Validation

1. The role should exist in the system

2. Transaction creator should have permissions to append role (CanAppendRole)

68 Chapter 9. Develop on Iroha

mailto:makoto@soramitsu


Iroha handbook: installation, getting started, API, guides, and troubleshooting, Release

3. Account, which appends role, has set of permissions in his roles that is a superset of appended role (in other
words no-one can append role that is more powerful than what transaction creator is)

Possible Stateful Validation Errors

Code Error Name Description How to solve
1 Could not append

role
Internal error happened Try again or contact devel-

opers
2 No such permis-

sions
Command’s creator does not have permission to ap-
pend role

Grant the necessary per-
mission

3 No such account Cannot find account to append role to Make sure account id is
correct

4 No such role Cannot find role with such name Make sure role id is correct

Call engine

Purpose

The purpose of call engine command is to deploy a new contract to the Iroha EVM or to call a method of an already
existing smart contract. An execution of a smart contract can potentially modify the state of the ledger provided the
transaction that contains this command is accepted to a block and the block is committed.

Schema

message CallEngine {
string caller = 1;
oneof opt_callee {

string callee = 2; // hex string
}
string input = 3; // hex string

}

Structure

Field Description Con-
straint

Example

Caller Iroha account ID of an account on whose
behalf the command is run

<ac-
count_name>@<domain_id>

test@mydomain

Callee the EVM address of a deployed smart con-
tract

20-bytes
string in
hex repre-
sentation

7C370993FD90AF204FD582004E2E54E6A94F2651

In-
put

Bytecode of a smart contract for a newly
deployed contracts or ABI-encoded string
of the contract method selector followed by
the set of its arguments

Hex string 40c10f19000000000000000000000000969453762b0c739dd285b31635efa00e24c2562800000000000000000000000000000000000000000000000000000000000004d2

9.3. Iroha API reference 69

mailto:test@mydomain
https://solidity.readthedocs.io/en/v0.6.5/abi-spec.html


Iroha handbook: installation, getting started, API, guides, and troubleshooting, Release

Validation

1. Caller is a valid Iroha account ID

2. The transaction creator has a role with either can_call_engine or can_call_engine_on_my_behalf permission

Possible Stateful Validation Errors

Code Error
Name

Description How to solve

1 Engine
is not
configured

This error means that Iroha was built without Burrow
EVM

See Build section of documenta-
tion to build Iroha correctly

2 No such
permis-
sions

Command’s creator does not have a permission to call
EVM engine

Grant the necessary permission

3 Cal-
lEngine
error

Code execution in EVM failed; the reason can be both
in the contract code itself or be rooted in nested Iroha
commands call

Investigation of the error root
cause is required in order to diag-
nose the issue

Create account

Purpose

The purpose of create account command is to make entity in the system, capable of sending transactions or queries,
storing signatories, personal data and identifiers.

Schema

message CreateAccount {
string account_name = 1;
string domain_id = 2;
bytes public_key = 3;

}

Structure

Field Description Constraint Example
Account name domain-unique name for account [a-z_0-9]{1,32} morgan_stanley
Domain ID target domain to make relation with should be created before

the account
america

Public key first public key to add to the account ed25519 public key 407e57f50ca48969b08ba948171bb2435e035d82cec417e18e4a38f5fb113f83

Validation

1. Transaction creator has permission to create an account

70 Chapter 9. Develop on Iroha

../../build/index.html#main-parameters


Iroha handbook: installation, getting started, API, guides, and troubleshooting, Release

2. Domain, passed as domain_id, has already been created in the system

3. Such public key has not been added before as first public key of account or added to a multi-signature account

Possible Stateful Validation Errors

Code Error
Name

Description How to solve

1 Could not
create ac-
count

Internal error happened Try again or contact de-
velopers

2 No such
permis-
sions

Command’s creator either does not have permission to create ac-
count or tries to create account in a more privileged domain, than
the one creator is in

Grant the necessary per-
mission or choose an-
other domain

3 No such
domain

Cannot find domain with such name Make sure domain id is
correct

4 Account
already
exists

Account with such name already exists in that domain Choose another name

Create asset

Purpose

The purpose of reate asset command is to create a new type of asset, unique in a domain. An asset is a countable
representation of a commodity.

Schema

message CreateAsset {
string asset_name = 1;
string domain_id = 2;
uint32 precision = 3;

}

Note: Please note that due to a known issue you would not get any exception if you pass invalid precision value.
Valid range is: 0 <= precision <= 255

Structure

Field Description Constraint Example
Asset name domain-unique name for asset [a-z_0-9]{1,32} soracoin
Domain ID target domain to make relation with RFC10351, RFC11232 japan
Precision number of digits after comma/dot 0 <= precision <= 255 2

1 https://www.ietf.org/rfc/rfc1035.txt
2 https://www.ietf.org/rfc/rfc1123.txt

9.3. Iroha API reference 71

https://www.ietf.org/rfc/rfc1035.txt
https://www.ietf.org/rfc/rfc1123.txt


Iroha handbook: installation, getting started, API, guides, and troubleshooting, Release

Validation

1. Transaction creator has permission to create assets

2. Asset name is unique in domain

Possible Stateful Validation Errors

Code Error Name Description How to solve
1 Could not create

asset
Internal error happened Try again or contact devel-

opers
2 No such permis-

sions
Command’s creator does not have permission to cre-
ate asset

Grant the necessary permis-
sion

3 No such domain Cannot find domain with such name Make sure domain id is cor-
rect

4 Asset already ex-
ists

Asset with such name already exists Choose another name

Create domain

Purpose

The purpose of create domain command is to make new domain in Iroha network, which is a group of accounts.

Schema

message CreateDomain {
string domain_id = 1;
string default_role = 2;

}

Structure

Field Description Constraint Example
Domain ID ID for created domain unique, RFC10351,

RFC11232
japan05

Default role role for any created user in the domain one of the existing roles User

Validation

1. Domain ID is unique

2. Account, who sends this command in transaction, has role with permission to create domain

3. Role, which will be assigned to created user by default, exists in the system

72 Chapter 9. Develop on Iroha



Iroha handbook: installation, getting started, API, guides, and troubleshooting, Release

Possible Stateful Validation Errors

Code Error Name Description How to solve
1 Could not create

domain
Internal error happened Try again or contact developers

2 No such permis-
sions

Command’s creator does not have permission to
create domain

Grant the necessary permission

3 Domain already
exists

Domain with such name already exists Choose another domain name

4 No default role
found

Role, which is provided as a default one for the
domain, is not found

Make sure the role you provided
exists or create it

Create role

Purpose

The purpose of create role command is to create a new role in the system from the set of permissions. Combining
different permissions into roles, maintainers of Iroha peer network can create customized security model.

Schema

message CreateRole {
string role_name = 1;
repeated RolePermission permissions = 2;

}

Structure

Field Description Constraint Example
Role name name of role to create [a-z_0-9]{1,32} User
RolePermission array of already existent permissions set of passed permissions

is fully included into set of
existing permissions

{can_receive,
can_transfer}

Validation

1. Set of passed permissions is fully included into set of existing permissions

2. Set of the permissions is not empty

9.3. Iroha API reference 73



Iroha handbook: installation, getting started, API, guides, and troubleshooting, Release

Possible Stateful Validation Errors

Code Error Name Description How to solve
1 Could not create

role
Internal error happened Try again or contact devel-

opers
2 No such permis-

sions
Command’s creator does not have permission to cre-
ate role

Grant the necessary permis-
sion

3 Role already exists Role with such name already exists Choose another role name

Detach role

Purpose

The purpose of detach role command is to detach a role from the set of roles of an account. By executing this command
it is possible to decrease the number of possible actions in the system for the user.

Schema

message DetachRole {
string account_id = 1;
string role_name = 2;

}

Structure

Field Description Constraint Example
Account ID ID of account where role will be deleted already existent makoto@soramitsu
Role name a detached role name existing role User

Validation

1. The role exists in the system

2. The account has such role

74 Chapter 9. Develop on Iroha

mailto:makoto@soramitsu


Iroha handbook: installation, getting started, API, guides, and troubleshooting, Release

Possible Stateful Validation Errors

Code Error Name Description How to solve
1 Could not detach role Internal error happened Try again or contact develop-

ers
2 No such permissions Command’s creator does not have permission

to detach role
Grant the necessary permis-
sion

3 No such account Cannot find account to detach role from Make sure account id is cor-
rect

4 No such role in ac-
count’s roles

Account with such id does not have role with
such name

Make sure account-role pair
is correct

5 No such role Role with such name does not exist Make sure role id is correct

Grant permission

Purpose

The purpose of grant permission command is to give another account rights to perform actions on the account of
transaction sender (give someone right to do something with my account).

Schema

message GrantPermission {
string account_id = 1;
GrantablePermission permission = 2;

}

Structure

Field Description Constraint Example
Account ID id of the account to which the rights are

granted
already existent makoto@soramitsu

GrantablePermission
name

name of grantable permission permission is defined CanTransferAssets

Validation

1. Account exists

2. Transaction creator is allowed to grant this permission

9.3. Iroha API reference 75

mailto:makoto@soramitsu


Iroha handbook: installation, getting started, API, guides, and troubleshooting, Release

Possible Stateful Validation Errors

Code Error Name Description How to solve
1 Could not grant per-

mission
Internal error happened Try again or contact de-

velopers
2 No such permissions Command’s creator does not have permission to

grant permission
Grant the necessary per-
mission

3 No such account Cannot find account to grant permission to Make sure account id is
correct

Remove peer

Purpose

The purpose of remove peer command is to write into ledger the fact of peer removal from the network. After a
transaction with RemovePeer has been committed, consensus and synchronization components will start using it.

Schema

message RemovePeer {
bytes public_key = 1; // hex string

}

Structure

Field Description Constraint Example
Public key peer public key, which is used in con-

sensus algorithm to sign vote mes-
sages

ed25519
public key

292a8714694095edce6be799398ed5d6244cd7be37eb813106b217d850d261f2

Validation

1. There is more than one peer in the network

2. Creator of the transaction has a role which has CanRemovePeer permission

3. Peer should have been previously added to the network

76 Chapter 9. Develop on Iroha



Iroha handbook: installation, getting started, API, guides, and troubleshooting, Release

Possible Stateful Validation Errors

Code Error Name Description How to solve
1 Could not remove peer Internal error happened Try again or contact developers
2 No such permissions Command’s creator does not have per-

mission to remove peer
Grant the necessary permission

3 No such peer Cannot find peer with such public key Make sure that the public key is
correct

4 Network size does not allow
to remove peer

After removing the peer the network
would be empty

Make sure that the network has
at least two peers

Remove signatory

Purpose

Purpose of remove signatory command is to remove a public key, associated with an identity, from an account

Schema

message RemoveSignatory {
string account_id = 1;
bytes public_key = 2;

}

Structure

Field Description Constraint Example
Account ID id of the account to which the rights are

granted
already existent makoto@soramitsu

Public key Signatory to delete ed25519 public key 407e57f50ca48969b08ba948171bb2435e035d82cec417e18e4a38f5fb113f83

Validation

1. When signatory is deleted, we should check if invariant of size(signatories) >= quorum holds

2. Signatory should have been previously added to the account

Two cases:

Case 1. When transaction creator wants to remove signatory from their account and he or she has permis-
sion CanRemoveSignatory

Case 2. CanRemoveSignatory was granted to transaction creator

9.3. Iroha API reference 77

mailto:makoto@soramitsu


Iroha handbook: installation, getting started, API, guides, and troubleshooting, Release

Possible Stateful Validation Errors

Code Error Name Description How to solve
1 Could not remove signa-

tory
Internal error happened Try again or con-

tact developers
2 No such permissions Command’s creator does not have permission to remove

signatory from his account
Grant the neces-
sary permission

3 No such account Cannot find account to remove signatory from Make sure account
id is correct

4 No such signatory Cannot find signatory with such public key Make sure public
key is correct

5 Quorum does not allow to
remove signatory

After removing the signatory account will be left with
less signatories, than its quorum allows

Reduce the quo-
rum

Revoke permission

Purpose

The purpose of revoke permission command is to revoke or dismiss given granted permission from another account in
the network.

Schema

message RevokePermission {
string account_id = 1;
GrantablePermission permission = 2;

}

Structure

Field Description Constraint Example
Account ID id of the account to which the rights are

granted
already existent makoto@soramitsu

GrantablePermission
name

name of grantable permission permission was
granted

CanTransferAs-
sets

Validation

Transaction creator should have previously granted this permission to a target account

78 Chapter 9. Develop on Iroha

mailto:makoto@soramitsu


Iroha handbook: installation, getting started, API, guides, and troubleshooting, Release

Possible Stateful Validation Errors

Code Error Name Description How to solve
1 Could not revoke per-

mission
Internal error happened Try again or contact de-

velopers
2 No such permissions Command’s creator does not have permission to re-

voke permission
Grant the necessary per-
mission

3 No such account Cannot find account to revoke permission from Make sure account id is
correct

Set account detail

Purpose

Purpose of set account detail command is to set key-value information for a given account

Warning: If there was a value for a given key already in the storage then it will be replaced with the new value

Schema

message SetAccountDetail{
string account_id = 1;
string key = 2;
string value = 3;

}

Structure

Field Description Constraint Example
Account ID id of the account to which the key-value

information was set
already existent makoto@soramitsu

Key key of information being set [A-Za-z0-9_]{1,64} Name
Value value of corresponding key 4096 Makoto

Validation

Three cases:

Case 1. When transaction creator wants to set account detail to other person’s account and creator has
permission can_set_detail.

Case 2. can_set_my_account_detail was granted to transaction creator in order to allow them to set
account details of the target account.

Case 3. When the account holder wants to set their own account details – no permission is needed in this
case.

9.3. Iroha API reference 79

mailto:makoto@soramitsu
../api/permissions.html#can-set-detail
../api/permissions.html#can-set-my-account-detail


Iroha handbook: installation, getting started, API, guides, and troubleshooting, Release

Possible Stateful Validation Errors

Code Error Name Description How to solve
1 Could not set ac-

count detail
Internal error happened Try again or contact

developers
2 No such permis-

sions
Command’s creator does not have permission to set account
detail for another account

Grant the necessary
permission

3 No such account Cannot find account to set account detail to Make sure account id
is correct

Set account quorum

Purpose

The purpose of set account quorum command is to set the number of signatories required to confirm the identity of a
user, who creates the transaction. Use case scenario is to set the number of different users, utilizing single account, to
sign off the transaction.

Schema

message SetAccountQuorum {
string account_id = 1;
uint32 quorum = 2;

}

Structure

Field Description Constraint Example
Account ID ID of account to set quorum already existent makoto@soramitsu
Quorum number of signatories needed to be in-

cluded within a transaction from this ac-
count

0 < quorum public-key set
up to account 128

5

Validation

When quorum is set, it is checked if invariant of size(signatories) >= quorum holds.

Two cases:

Case 1. When transaction creator wants to set quorum for his/her account and he or she has permission
CanRemoveSignatory

Case 2. CanRemoveSignatory was granted to transaction creator

80 Chapter 9. Develop on Iroha

mailto:makoto@soramitsu


Iroha handbook: installation, getting started, API, guides, and troubleshooting, Release

Possible Stateful Validation Errors

Code Error Name Description How to solve
1 Could not set

quorum
Internal error happened Try again or contact developers

2 No such permis-
sions

Command’s creator does not have permission to set
quorum for his account

Grant the necessary permission

3 No such account Cannot find account to set quorum to Make sure account id is correct
4 No signatories on

account
Cannot find any signatories attached to the account Add some signatories before

setting quorum
5 New quorum is

incorrect
New quorum size is less than account’s signatories
amount

Choose another value or add
more signatories

Subtract asset quantity

Purpose

The purpose of subtract asset quantity command is the opposite of AddAssetQuantity commands — to decrease the
number of assets on account of transaction creator.

Schema

message SubtractAssetQuantity {
string asset_id = 1;
string amount = 2;

}

Note: Please note that due to a known issue you would not get any exception if you pass invalid precision value.
Valid range is: 0 <= precision <= 255

Structure

Field Description Constraint Example
Asset ID id of the asset <asset_name>#<domain_id>usd#morgan
Amount positive amount of the asset to subtract > 0 200

Validation

1. Asset and account should exist

2. Added quantity precision should be equal to asset precision

3. Creator of the transaction should have a role which has permissions for subtraction of assets

9.3. Iroha API reference 81



Iroha handbook: installation, getting started, API, guides, and troubleshooting, Release

Possible Stateful Validation Errors

Code Error Name Description How to solve
1 Could not subtract

asset quantity
Internal error happened Try again or contact developers

2 No such permissions Command’s creator does not have permission
to subtract asset quantity

Grant the necessary permission

3 No such asset found Cannot find asset with such name or precision
in account’s assets

Make sure asset name and preci-
sion are correct

4 Not enough balance Account’s balance is too low to perform the
operation

Add asset to account or choose
lower value to subtract

Transfer asset

Purpose

The purpose of transfer asset command is to share assets within the account in peer network: in the way that source
account transfers assets to the target account.

Schema

message TransferAsset {
string src_account_id = 1;
string dest_account_id = 2;
string asset_id = 3;
string description = 4;
string amount = 5;

}

Structure

Field Description Constraint Example
Source account ID ID of the account to withdraw the asset

from
already existent makoto@soramitsu

Destination ac-
count ID

ID of the account to send the asset to already existent alex@california

Asset ID ID of the asset to transfer already existent usd#usa
Description Message to attach to the transfer Max length of description

(set in genesis block, by
default is 100*1024)

here’s my money
take it

Amount amount of the asset to transfer 0 <= precision <= 255 200.20

Validation

1. Source account has this asset in its AccountHasAsset relation1

2. An amount is a positive number and asset precision is consistent with the asset definition

82 Chapter 9. Develop on Iroha

mailto:makoto@soramitsu
mailto:alex@california


Iroha handbook: installation, getting started, API, guides, and troubleshooting, Release

3. Source account has enough amount of asset to transfer and is not zero

4. Source account can transfer money, and destination account can receive money (their roles have these permis-
sions)

5. Description length is less than 100*1024 (one hundred kilobytes) and less than ‘MaxDescriptionSize’ setting
value if set.

Possible Stateful Validation Errors

Code Error Name Description How to solve
1 Could not

transfer asset
Internal error happened Try again or contact developers

2 No such per-
missions

Command’s creator does not have permis-
sion to transfer asset from his account

Grant the necessary permission

3 No such
source ac-
count

Cannot find account with such id to transfer
money from

Make sure source account id is correct

4 No such desti-
nation account

Cannot find account with such id to transfer
money to

Make sure destination account id is correct

5 No such asset
found

Cannot find such asset Make sure asset name and precision are
correct

6 Not enough
balance

Source account’s balance is too low to per-
form the operation

Add asset to account or choose lower value
to subtract

7 Too much as-
set to transfer

Resulting asset quantity of destination ac-
count would exceed the allowed maximum

Make sure that the final destination value
is less than 2^256 / 10^asset_precision

8 Too long de-
scription

Too long description Ensure that description length matches the
criteria above (or just shorten it)

Compare and Set Account Detail

Purpose

Purpose of compare and set account detail command is to set key-value information for a given account if the old value
matches the value passed.

Schema

message CompareAndSetAccountDetail{
string account_id = 1;
string key = 2;
string value = 3;
oneof opt_old_value {

string old_value = 4;
}
bool check_empty = 5;

}

Note: Pay attention, that old_value field is optional. This is due to the fact that the key-value pair might not exist.

9.3. Iroha API reference 83



Iroha handbook: installation, getting started, API, guides, and troubleshooting, Release

Structure

Field Description Constraint Example
Account ID id of the account to which the key-value

information was set. If key-value pair
doesnot exist , then it will be created

an existing account artyom@soramitsu

Key key of information being set [A-Za-z0-9_]{1,64} Name
Value new value for the corresponding key length of value 4096 Artyom
Old value current value for the corresponding key length of value 4096 Artem
check_empty if true, empty old_value in command

must match absent value in WSV; if false,
any old_value in command matches ab-
sent in WSV (legacy)

bool true

Validation

Three cases:

Case 1. When transaction creator wants to set account detail to his/her account and he or she has permis-
sion GetMyAccountDetail / GetAllAccountsDetail / GetDomainAccountDetail

Case 2. When transaction creator wants to set account detail to another account and he or she has permis-
sions SetAccountDetail and GetAllAccountsDetail / GetDomainAccountDetail

Case 3. SetAccountDetail permission was granted to transaction creator and he or she has permission
GetAllAccountsDetail / GetDomainAccountDetail

Possible Stateful Validation Errors

Code Error Name Description How to solve
1 Could not compare and

set account detail
Internal error happened Try again or con-

tact developers
2 No such permissions Command’s creator does not have permission to set and

read account detail for this account
Grant the neces-
sary permission

3 No such account Cannot find account to set account detail to Make sure account
id is correct

4 No match values Old values do not match Make sure old
value is correct

Set setting value

Purpose

The purpose of set setting value command is to enable customization to your needs.

84 Chapter 9. Develop on Iroha

mailto:artyom@soramitsu


Iroha handbook: installation, getting started, API, guides, and troubleshooting, Release

Schema

message SetSettingValue {
string key = 1;
string value = 2;

}

Structure

Field Description Constraint Example
Key Key of the setting list of possible settings MaxDescriptionSize
Value Value of the setting type of setting 255

Validation

1. Command can be executed only from genesis block

List of possible settings

Key Value constraint Description
MaxDescription-
Size

Unsigned integer, 0 <= MaxDescriptionSize <
2^32

Maximum transaction description
length

9.3.2 Queries

A query is a request related to certain part of World State View — the latest state of blockchain. Query cannot modify
the contents of the chain and a response is returned to any client immediately after receiving peer has processed a
query.

Validation

The validation for all queries includes:

• timestamp — shouldn’t be from the past (24 hours prior to the peer time) or from the future (range of 5 minutes
added to the peer time)

• signature of query creator — used for checking the identity of query creator

• query counter — checked to be incremented with every subsequent query from query creator

• roles — depending on the query creator’s role: the range of state available to query can relate to to the same
account, account in the domain, to the whole chain, or not allowed at all

Result Pagination

Some queries support TxPaginationMeta that allows to customise and sort the query result in different ways what
could be used in development. Pagination works together with ordering prameters, similar to ORDER BY in SQL

9.3. Iroha API reference 85

https://www.postgresql.org/docs/12/sql-select.html#SQL-ORDERBY
https://www.postgresql.org/docs/12/sql-select.html#SQL-ORDERBY


Iroha handbook: installation, getting started, API, guides, and troubleshooting, Release

language – “the result rows are sorted according to the specified expression (in Iroha – Field). If two rows are equal
according to the leftmost expression, they are compared according to the next expression and so on.”

Here is how the “expression” is specified:

enum Field {
kCreatedTime = 0;
kPosition = 1;

}

There are 2 bases for ordering – on creation time and depending on the position in the block.

There is an ascending and descending directions for each Field:

enum Direction {
kAscending = 0;
kDescending = 1;

}

Now, the ordering itself:

message Ordering {
message FieldOrdering {
Field field = 1;
Direction direction = 2;

}
repeated FieldOrdering sequence = 1;

}

After ordering is specified, pagination can be executed:

message TxPaginationMeta {
uint32 page_size = 1;
oneof opt_first_tx_hash {

string first_tx_hash = 2;
}
Ordering ordering = 3;

}

What is added to the request structure in case of pagination

Field Description Constraint Example
Page size size of the page to be returned by the

query, if the response contains fewer
transactions than a page size, then next
tx hash will be empty in response

page_size > 0 5

First tx hash hash of the first transaction in the page. If
that field is not set — then the first trans-
actions are returned

hash in hex format bddd58404d1315e0eb27902c5d7c8eb0602c16238f005773df406bc191308929

ordering how the results should be ordered (before
pagination is applied)

see fields below see fields below

ordering.sequence ordeing spec, like in SQL ORDER BY sequence of fields and di-
rections

[{kCreatedTime,
kAscending},
{kPosition, kDe-
scending}]

86 Chapter 9. Develop on Iroha

https://www.postgresql.org/docs/12/sql-select.html#SQL-ORDERBY
https://www.postgresql.org/docs/12/sql-select.html#SQL-ORDERBY


Iroha handbook: installation, getting started, API, guides, and troubleshooting, Release

Engine Receipts

Purpose

Retrieve a receipt of a CallEngine command. Similar to the eth.GetTransactionReceipt API call of Ethereum JSON
RPC API. Allows to access the event log created during computations inside the EVM.

Request Schema

message GetEngineReceipts{
string tx_hash = 1; // hex string
}

Request Structure

Field Description Constraint Example
Transaction Hash hash of the transaction that has the Cal-

lEngine command
hash in hex format 5241f70cf3adbc180199c1d2d02db82334137aede5f5ed35d649bbbc75ab2634

Response Schema

message EngineReceiptsResponse {
repeated EngineReceipt engine_receipt = 1;

}
message EngineReceipt {

int32 command_index = 1;
string caller = 2;
oneof opt_to_contract_address {

CallResult call_result = 3;
string contract_address = 4;

}
repeated EngineLog logs = 5;

}
message CallResult {

string callee = 1;
string result_data = 2;

}
message EngineLog {

string address = 1; // hex string
string data = 2; // hex string
repeated string topics = 3; // hex string

}

9.3. Iroha API reference 87



Iroha handbook: installation, getting started, API, guides, and troubleshooting, Release

Response Structure

Field Description Constraint Example
command_index Index of the CallEngine command in the

transaction
non-negative integer 0

caller caller account of the smart contract <account_name>@<domain_id>admin@test
call_result.callee address of called contract 20-bytes string in hex rep-

resentation
0000000000000000000000000000000000000000

call_result.result_datathe value returned by the contract string in hex representa-
tion

00

contract_address EVM address of a newly deployed con-
tract

20-bytes string in hex rep-
resentation

7C370993FD90AF204FD582004E2E54E6A94F2651

logs Array of EVM event logs created during
smart contract execution.

see below see below

logs.[].address the contract caller EVM address 20-bytes string in hex rep-
resentation

577266A3CE7DD267A4C14039416B725786605FF4

logs.[].data the logged data hex string 0000000000000000000000007203DF5D7B4F198848477D7F9EE080B207E544DD000000000000000000000000000000000000000000000000000000000000006D
logs.[].topics log topic as in Ethereum 32-byte strings [3990DB2D31862302A685E8086B5755072A6E2B5B780AF1EE81ECE35EE3CD3345,

000000000000000000000000969453762B0C739DD285B31635EFA00E24C25628]

Possible Stateful Validation Errors

Code Error
Name

Description How to solve

2 No such
permis-
sions

Query’s creator does not have any of the
permissions to get the call engine receipt

Grant the necessary permission

3 Invalid
signatures

Signatures of this query did not pass vali-
dation

Add more signatures and make sure query’s sig-
natures are a subset of account’s signatories

Get Account

Purpose

Purpose of get account query is to get the state of an account.

Request Schema

message GetAccount {
string account_id = 1;

}

Request Structure

Field Description Constraint Example
Account ID account id to request its state <account_name>@<domain_id>alex@morgan

88 Chapter 9. Develop on Iroha

mailto:admin@test
mailto:alex@morgan


Iroha handbook: installation, getting started, API, guides, and troubleshooting, Release

Response Schema

message AccountResponse {
Account account = 1;
repeated string account_roles = 2;

}

message Account {
string account_id = 1;
string domain_id = 2;
uint32 quorum = 3;
string json_data = 4;

}

Response Structure

Field Description Constraint Example
Account ID account id <account_name>@<domain_id>alex@morgan
Domain ID domain where the account was created RFC10351, RFC11232 morgan
Quorum number of signatories needed to sign the

transaction to make it valid
0 < quorum 128 5

JSON data key-value account information JSON { genesis: {name:
alex} }

Possible Stateful Validation Errors

Code Error
Name

Description How to solve

1 Could not
get account

Internal error happened Try again or contact developers

2 No such
permissions

Query’s creator does not have any of
the permissions to get account

Grant the necessary permission: individual, global
or domain one

3 Invalid sig-
natures

Signatures of this query did not pass
validation

Add more signatures and make sure query’s signa-
tures are a subset of account’s signatories

Get Block

Purpose

Purpose of get block query is to get a specific block, using its height as an identifier

Request Schema

1 https://www.ietf.org/rfc/rfc1035.txt
2 https://www.ietf.org/rfc/rfc1123.txt

9.3. Iroha API reference 89

mailto:alex@morgan
https://www.ietf.org/rfc/rfc1035.txt
https://www.ietf.org/rfc/rfc1123.txt


Iroha handbook: installation, getting started, API, guides, and troubleshooting, Release

message GetBlock {
uint64 height = 1;

}

Request Structure

Field Description Constraint Example
Height height of the block to be retrieved 0 < height < 2^64 42

Response Schema

message BlockResponse {
Block block = 1;

}

Response Structure

Field Description Constraint Example
Block the retrieved block block structure block

Possible Stateful Validation Errors

Code Error
Name

Description How to solve

1 Could not
get block

Internal error happened Try again or contact developers

2 No such
permissions

Query’s creator does not have a per-
mission to get block

Grant can_get_block permission

3 Invalid sig-
natures

Signatures of this query did not pass
validation

Add more signatures and make sure query’s signa-
tures are a subset of account’s signatories

3 Invalid
height

Supplied height is not uint_64 or
greater than the ledger’s height

Check the height and try again

Note: Error code 3 is ambiguous for this query. It indicates either invalid signatories or invalid height. Use this
method with height = 1 (first block is always present) to check for invalid signatories.

Get Signatories

Purpose

Purpose of get signatories query is to get signatories, which act as an identity of the account.

90 Chapter 9. Develop on Iroha

permissions.html#can-get-blocks


Iroha handbook: installation, getting started, API, guides, and troubleshooting, Release

Request Schema

message GetSignatories {
string account_id = 1;

}

Request Structure

Field Description Constraint Example
Account ID account id to request signatories <account_name>@<domain_id>alex@morgan

Response Schema

message SignatoriesResponse {
repeated bytes keys = 1;

}

Response Structure

Field Description Constraint Example
Keys an array of public keys ed25519 292a8714694095edce6be799398ed5d6244cd7be37eb813106b217d850d261f2

Possible Stateful Validation Errors

Code Error Name Description How to solve
1 Could not get

signatories
Internal error happened Try again or contact developers

2 No such per-
missions

Query’s creator does not have any of
the permissions to get signatories

Grant the necessary permission: individual,
global or domain one

3 Invalid signa-
tures

Signatures of this query did not pass
validation

Add more signatures and make sure query’s sig-
natures are a subset of account’s signatories

Get Transactions

Purpose

GetTransactions is used for retrieving information about transactions, based on their hashes.

Note: This query is valid if and only if all the requested hashes are correct: corresponding transactions exist, and the
user has a permission to retrieve them

9.3. Iroha API reference 91

mailto:alex@morgan
https://ed25519.cr.yp.to


Iroha handbook: installation, getting started, API, guides, and troubleshooting, Release

Request Schema

message GetTransactions {
repeated bytes tx_hashes = 1;

}

Request Structure

Field Description Constraint Example
Transactions
hashes

an array of hashes array with 32 byte hashes {hash1, hash2. . . }

Response Schema

message TransactionsResponse {
repeated Transaction transactions = 1;

}

Response Structure

Field Description Constraint Example
Transactions an array of transactions Committed transactions {tx1, tx2. . . }

Possible Stateful Validation Errors

Code Error
Name

Description How to solve

1 Could not
get trans-
actions

Internal error happened Try again or contact developers

2 No such
permis-
sions

Query’s creator does not have any of the permissions
to get transactions

Grant the necessary permission: in-
dividual, global or domain one

3 Invalid
signatures

Signatures of this query did not pass validation Add more signatures and make sure
query’s signatures are a subset of ac-
count’s signatories

4 Invalid
hash

At least one of the supplied hashes either does not exist
in user’s transaction list or creator of the query does not
have permissions to see it

Check the supplied hashes and try
again

Get Pending Transactions

92 Chapter 9. Develop on Iroha



Iroha handbook: installation, getting started, API, guides, and troubleshooting, Release

Purpose

GetPendingTransactions is used for retrieving a list of pending (not fully signed) multisignature transactions or batches
of transactions issued by account of query creator.

Note: This query uses pagination for quicker and more convenient query responses. Please read about it and specify
pagination before sending the query request as well as the request structure.

Request Schema

message GetPendingTransactions {
TxPaginationMeta pagination_meta = 1;

}

All the user’s semi-signed multisignature (pending) transactions can be queried. Maximum amount of transactions
contained in a response can be limited by page_size field. All the pending transactions are stored till they have
collected enough signatures or get expired. The mutual order of pending transactions or batches of transactions is
preserved for a user. That allows a user to query all transactions sequentially - page by page. Each response may
contain a reference to the next batch or transaction that can be queried. A page size can be greater than the size of the
following batch (in transactions). In that case, several batches or transactions will be returned. During navigating over
pages, the following batch can collect the missing signatures before it gets queried. This will result in stateful failed
query response due to a missing hash of the batch.

Example

If there are two pending batches with three transactions each and a user queries pending transactions with page size
5, then the transactions of the first batch will be in the response and a reference (first transaction hash and batch size,
even if it is a single transaction in fact) to the second batch will be specified too. Transactions of the second batch are
not included in the first response because the batch cannot be devided into several parts and only complete batches can
be contained in a response.

Response Schema

message PendingTransactionsPageResponse {
message BatchInfo {

string first_tx_hash = 1;
uint32 batch_size = 2;

}
repeated Transaction transactions = 1;
uint32 all_transactions_size = 2;
BatchInfo next_batch_info = 3;

}

Response Structure

The response contains a list of pending transactions, the amount of all stored pending transactions for the user and the
information required to query the subsequent page (if exists).

9.3. Iroha API reference 93

../../concepts_architecture/glossary.html#multisignature-transactions
../../concepts_architecture/glossary.html#batch-of-transactions
../../concepts_architecture/glossary.html#batch-of-transactions
../../concepts_architecture/glossary.html#pending-transactions


Iroha handbook: installation, getting started, API, guides, and troubleshooting, Release

Field Description Constraint Example
Transactions an array of pending transactions Pending transactions {tx1, tx2. . . }
All transactions
size

the number of stored transactions all_transactions_size >= 0 0

Next batch info A reference to the next page - the mes-
sage might be not set in a response

First tx hash hash of the first transaction in the next
batch

hash in hex format bddd58404d1315e0eb27902c5d7c8eb0602c16238f005773df406bc191308929

Batch size Minimum page size required to fetch the
next batch

batch_size > 0 3

Get Pending Transactions (deprecated)

Warning: The query without parameters is deprecated now and will be removed in the following major Iroha
release (2.0). Please use the new query version instead: Get Pending Transactions.

Purpose

GetPendingTransactions is used for retrieving a list of pending (not fully signed) multisignature transactions or batches
of transactions issued by account of query creator.

Request Schema

message GetPendingTransactions {
}

Response Schema

message TransactionsResponse {
repeated Transaction transactions = 1;

}

Response Structure

The response contains a list of pending transactions.

Field Description Constraint Example
Transactions an array of pending transactions Pending transactions {tx1, tx2. . . }

94 Chapter 9. Develop on Iroha

../../concepts_architecture/glossary.html#multisignature-transactions
../../concepts_architecture/glossary.html#batch-of-transactions
../../concepts_architecture/glossary.html#batch-of-transactions
../../concepts_architecture/glossary.html#pending-transactions


Iroha handbook: installation, getting started, API, guides, and troubleshooting, Release

Possible Stateful Validation Errors

Code Error Name Description How to solve
1 Could not get

pending transac-
tions

Internal error happened Try again or contact developers

2 No such permis-
sions

Query’s creator does not have any of the
permissions to get pending transactions

Grant the necessary permission: individual,
global or domain one

3 Invalid signa-
tures

Signatures of this query did not pass
validation

Add more signatures and make sure query’s
signatures are a subset of account’s signato-
ries

Get Account Transactions

Purpose

In a case when a list of transactions per account is needed, GetAccountTransactions query can be formed.

Note: This query uses pagination for quicker and more convenient query responses. Please read about it and specify
pagination before sending the query request as well as the request structure.

Request Schema

message GetAccountTransactions {
string account_id = 1;
TxPaginationMeta pagination_meta = 2;

}

Request Structure

Field Description Constraint Example
Account ID account id to request transactions from <account_name>@<domain_id>makoto@soramitsu

Response Schema

message TransactionsPageResponse {
repeated Transaction transactions = 1;
uint32 all_transactions_size = 2;
oneof next_page_tag {

string next_tx_hash = 3;
}

}

9.3. Iroha API reference 95

mailto:makoto@soramitsu


Iroha handbook: installation, getting started, API, guides, and troubleshooting, Release

Possible Stateful Validation Errors

Code Error Name Description How to solve
1 Could not get

account transac-
tions

Internal error happened Try again or contact developers

2 No such permis-
sions

Query’s creator does not have any of the
permissions to get account transactions

Grant the necessary permission: individual,
global or domain one

3 Invalid signa-
tures

Signatures of this query did not pass
validation

Add more signatures and make sure query’s
signatures are a subset of account’s signato-
ries

4 Invalid pagina-
tion hash

Supplied hash does not appear in any of
the user’s transactions

Make sure hash is correct and try again

5 Invalid account
id

User with such account id does not exist Make sure account id is correct

Response Structure

Field Description Constraint Example
Transactions an array of transactions for given account Committed transactions {tx1, tx2. . . }
All transactions
size

total number of transactions created by
the given account

100

Next transaction
hash

hash pointing to the next transaction after
the last transaction in the page. Empty
if a page contains the last transaction for
the given account

bddd58404d1315e0eb27902c5d7c8eb0602c16238f005773df406bc191308929

Get Account Asset Transactions

Purpose

GetAccountAssetTransactions query returns all transactions associated with given account and asset.

Note: This query uses pagination for quicker and more convenient query responses. Please read about it and specify
pagination before sending the query request as well as the request structure.

Request Schema

message GetAccountAssetTransactions {
string account_id = 1;
string asset_id = 2;
TxPaginationMeta pagination_meta = 3;

}

96 Chapter 9. Develop on Iroha



Iroha handbook: installation, getting started, API, guides, and troubleshooting, Release

Request Structure

Field Description Constraint Example
Account ID account id to request transactions from <account_name>@<domain_id>makoto@soramitsu
Asset ID asset id in order to filter transactions con-

taining this asset
<asset_name>#<domain_id>jpy#japan

Response Schema

message TransactionsPageResponse {
repeated Transaction transactions = 1;
uint32 all_transactions_size = 2;
oneof next_page_tag {

string next_tx_hash = 3;
}

}

Response Structure

Field Description Constraint Example
Transactions an array of transactions for given account

and asset
Committed transactions {tx1, tx2. . . }

All transactions
size

total number of transactions for given ac-
count and asset

100

Next transaction
hash

hash pointing to the next transaction after
the last transaction in the page. Empty
if a page contains the last transaction for
given account and asset

bddd58404d1315e0eb27902c5d7c8eb0602c16238f005773df406bc191308929

Possible Stateful Validation Errors

Code Error Name Description How to solve
1 Could not get ac-

count asset trans-
actions

Internal error happened Try again or contact developers

2 No such permis-
sions

Query’s creator does not have any of the
permissions to get account asset trans-
actions

Grant the necessary permission: individ-
ual, global or domain one

3 Invalid signatures Signatures of this query did not pass val-
idation

Add more signatures and make sure
query’s signatures are a subset of account’s
signatories

4 Invalid pagination
hash

Supplied hash does not appear in any of
the user’s transactions

Make sure hash is correct and try again

5 Invalid account id User with such account id does not exist Make sure account id is correct
6 Invalid asset id Asset with such asset id does not exist Make sure asset id is correct

9.3. Iroha API reference 97

mailto:makoto@soramitsu


Iroha handbook: installation, getting started, API, guides, and troubleshooting, Release

Get Account Assets

Purpose

To get the state of all assets in an account (a balance), GetAccountAssets query can be used.

Request Schema

message AssetPaginationMeta {
uint32 page_size = 1;
oneof opt_first_asset_id {

string first_asset_id = 2;
}

}

message GetAccountAssets {
string account_id = 1;
AssetPaginationMeta pagination_meta = 2;

}

Request Structure

Field Description Constraint Example
Account ID account id to request balance from <account_name>@<domain_id>makoto@soramitsu
AssetPaginationMeta.page_sizeRequested page size. The number

of assets in response will not exceed
this value. If the response was trun-
cated, the asset id immediately follow-
ing the returned ones will be provided in
next_asset_id.

0 < page_size < 32
bit unsigned int max
(4294967296)

100

AssetPaginationMeta.first_asset_idRequested page start. If the field is not
set, then the first page is returned.

name#domain my_asset#my_domain

Response Schema

message AccountAssetResponse {
repeated AccountAsset account_assets = 1;
uint32 total_number = 2;
oneof opt_next_asset_id {

string next_asset_id = 3;
}

}

message AccountAsset {
string asset_id = 1;
string account_id = 2;
string balance = 3;

}

98 Chapter 9. Develop on Iroha

mailto:makoto@soramitsu


Iroha handbook: installation, getting started, API, guides, and troubleshooting, Release

Response Structure

Field Description Constraint Example
Asset ID identifier of asset used for checking the

balance
<asset_name>#<domain_id>jpy#japan

Account ID account which has this balance <account_name>@<domain_id>makoto@soramitsu
Balance balance of the asset No less than 0 200.20
total_number number of assets matching query without

page limits
0 < total_number < 32
bit unsigned int max
(4294967296)

100500

next_asset_id the id of asset immediately following
curent page

name#domain my_asset#my_domain

Note: If page size is equal or greater than the number of assets matching other requested criteria, the next asset id
will be unset in the response. Otherwise, it contains the value that clients should use for the first asset id if they want
to fetch the next page.

Possible Stateful Validation Errors

Code Error Name Description How to solve
1 Could not get

account assets
Internal error happened Try again or contact developers

2 No such per-
missions

Query’s creator does not have any of
the permissions to get account assets

Grant the necessary permission: individual,
global or domain one

3 Invalid signa-
tures

Signatures of this query did not pass
validation

Add more signatures and make sure query’s sig-
natures are a subset of account’s signatories

4 Invalid pagi-
nation meta-
data

Wrong page size or nonexistent first
asset

Set a valid page size, and make sure that asset
id is valid, or leave first asset id unspecified

Get Account Detail

Purpose

To get details of the account, GetAccountDetail query can be used. Account details are key-value pairs, splitted into
writers categories. Writers are accounts, that added the corresponding account detail. Example of such structure is:

{
"account@a_domain": {

"age": 18,
"hobbies": "crypto"

},
"account@b_domain": {

"age": 20,
"sports": "basketball"

}
}

9.3. Iroha API reference 99

mailto:makoto@soramitsu


Iroha handbook: installation, getting started, API, guides, and troubleshooting, Release

Here, one can see four account details - “age”, “hobbies” and “sports” - added by two writers - “account@a_domain”
and “account@b_domain”. All of these details, obviously, are about the same account.

Request Schema

message AccountDetailRecordId {
string writer = 1;
string key = 2;

}

message AccountDetailPaginationMeta {
uint32 page_size = 1;
AccountDetailRecordId first_record_id = 2;

}

message GetAccountDetail {
oneof opt_account_id {
string account_id = 1;

}
oneof opt_key {
string key = 2;

}
oneof opt_writer {
string writer = 3;

}
AccountDetailPaginationMeta pagination_meta = 4;

}

Note: Pay attention, that all fields except pagination meta are optional. The reasons for that are described below.

Warning: Pagination metadata can be missing in the request for compatibility reasons, but this behaviour is
deprecated and should be avoided.

Request Structure

Field Description Constraint Example
Account ID account id to get details from <account_name>@<domain_id>account@domain
Key key, under which to get details string age
Writer account id of writer <account_name>@<domain_id>account@domain
AccountDetailPaginationMeta.page_sizeRequested page size. The number of

records in response will not exceed
this value. If the response was trun-
cated, the record id immediately follow-
ing the returned ones will be provided in
next_record_id.

0 < page_size < 32
bit unsigned int max
(4294967296)

100

AccountDetailPaginationMeta.first_record_id.writerrequested page start by writer name#domain my_asset#my_domain
AccountDetailPaginationMeta.first_record_id.keyrequested page start by key string age

100 Chapter 9. Develop on Iroha

mailto:account@a_domain
mailto:account@b_domain
mailto:account@domain
mailto:account@domain


Iroha handbook: installation, getting started, API, guides, and troubleshooting, Release

Note: When specifying first record id, it is enough to provide the attributes (writer, key) that are unset in the main
query.

Response Schema

message AccountDetailResponse {
string detail = 1;
uint64 total_number = 2;
AccountDetailRecordId next_record_id = 3;

}

Response Structure

Field Description Constraint Example
Detail key-value pairs with account details JSON see below
total_number number of records matching query with-

out page limits
0 < total_number < 32
bit unsigned int max
(4294967296)

100

next_record_id.writer the writer account of the record immedi-
ately following curent page

<account_name>@<domain_id>pushkin@lyceum.tsar

next_record_id.key the key of the record immediately follow-
ing curent page

string cold and sun

Possible Stateful Validation Errors

Code Error Name Description How to solve
1 Could not get

account detail
Internal error happened Try again or contact developers

2 No such per-
missions

Query’s creator does not have any of
the permissions to get account detail

Grant the necessary permission: individual, global
or domain one

3 Invalid signa-
tures

Signatures of this query did not pass
validation

Add more signatures and make sure query’s signa-
tures are a subset of account’s signatories

4 Invalid pagi-
nation meta-
data

Wrong page size or nonexistent first
record

Set valid page size, and make sure that the first
record id is valid, or leave the first record id un-
specified

Usage Examples

Again, let’s consider the example of details from the beginning and see how different variants of GetAccountDetail
queries will change the resulting response.

{
"account@a_domain": {

"age": 18,
"hobbies": "crypto"

},

9.3. Iroha API reference 101

mailto:pushkin@lyceum.tsar


Iroha handbook: installation, getting started, API, guides, and troubleshooting, Release

"account@b_domain": {
"age": 20,
"sports": "basketball"

}
}

account_id is not set

If account_id is not set - other fields can be empty or not - it will automatically be substituted with query creator’s
account, which will lead to one of the next cases.

only account_id is set

In this case, all details about that account are going to be returned, leading to the following response:

{
"account@a_domain": {

"age": 18,
"hobbies": "crypto"

},
"account@b_domain": {

"age": 20,
"sports": "basketball"

}
}

account_id and key are set

Here, details added by all writers under the key are going to be returned. For example, if we asked for the key “age”,
that’s the response we would get:

{
"account@a_domain": {

"age": 18
},
"account@b_domain": {

"age": 20
}

}

account_id and writer are set

Now, the response will contain all details about this account, added by one specific writer. For example, if we asked
for writer “account@b_domain”, we would get:

{
"account@b_domain": {

"age": 20,
"sports": "basketball"

}
}

account_id, key and writer are set

Finally, if all three field are set, result will contain details, added the specific writer and under the specific key, for
example, if we asked for key “age” and writer “account@a_domain”, we would get:

{
"account@a_domain": {

"age": 18

102 Chapter 9. Develop on Iroha

mailto:account@b_domain
mailto:account@a_domain


Iroha handbook: installation, getting started, API, guides, and troubleshooting, Release

}
}

Get Asset Info

Purpose

In order to get information on the given asset (as for now - its precision), user can send GetAssetInfo query.

Request Schema

message GetAssetInfo {
string asset_id = 1;

}

Request Structure

Field Description Constraint Example
Asset ID asset id to know related information <asset_name>#<domain_id>jpy#japan

Response Schema

message Asset {
string asset_id = 1;
string domain_id = 2;
uint32 precision = 3;

}

Note: Please note that due to a known issue you would not get any exception if you pass invalid precision value.
Valid range is: 0 <= precision <= 255

Possible Stateful Validation Errors

Code Error Name Description How to solve
1 Could not

get asset info
Internal error happened Try again or contact developers

2 No such per-
missions

Query’s creator does not have any of
the permissions to get asset info

Grant the necessary permission: individual, global
or domain one

3 Invalid
signatures

Signatures of this query did not pass
validation

Add more signatures and make sure query’s signa-
tures are a subset of account’s signatories

9.3. Iroha API reference 103



Iroha handbook: installation, getting started, API, guides, and troubleshooting, Release

Response Structure

Field Description Constraint Example
Asset ID identifier of asset used for checking the

balance
<asset_name>#<domain_id>jpy#japan

Domain ID domain related to this asset RFC10351, RFC11232 japan
Precision number of digits after comma 0 <= precision <= 255 2

Get Roles

Purpose

To get existing roles in the system, a user can send GetRoles query to Iroha network.

Request Schema

message GetRoles {
}

Response Schema

message RolesResponse {
repeated string roles = 1;

}

Response Structure

Field Description Constraint Example
Roles array of created roles in the network set of roles in the system {MoneyCreator,

User, Admin, . . . }

Possible Stateful Validation Errors

Code Error
Name

Description How to solve

1 Could not
get roles

Internal error happened Try again or contact developers

2 No such
permis-
sions

Query’s creator does not have any of
the permissions to get roles

Grant the necessary permission: individual, global
or domain one

3 Invalid sig-
natures

Signatures of this query did not pass
validation

Add more signatures and make sure query’s signa-
tures are a subset of account’s signatories

104 Chapter 9. Develop on Iroha



Iroha handbook: installation, getting started, API, guides, and troubleshooting, Release

Get Role Permissions

Purpose

To get available permissions per role in the system, a user can send GetRolePermissions query to Iroha network.

Request Schema

message GetRolePermissions {
string role_id = 1;

}

Request Structure

Field Description Constraint Example
Role ID role to get permissions for existing role in the system MoneyCreator

Response Schema

message RolePermissionsResponse {
repeated string permissions = 1;

}

Response Structure

Field Description Constraint Example
Permissions array of permissions related to the role string of permissions re-

lated to the role
{can_add_asset_qty,
. . . }

Possible Stateful Validation Errors

Code Error Name Description How to solve
1 Could not get

role permis-
sions

Internal error happened Try again or contact developers

2 No such per-
missions

Query’s creator does not have any of
the permissions to get role permissions

Grant the necessary permission: individual,
global or domain one

3 Invalid signa-
tures

Signatures of this query did not pass
validation

Add more signatures and make sure query’s
signatures are a subset of account’s signatories

Get Peers

9.3. Iroha API reference 105



Iroha handbook: installation, getting started, API, guides, and troubleshooting, Release

Purpose

A query that returns a list of peers in Iroha network.

Request Schema

message GetPeers {
}

Response Schema

message Peer {
string address = 1;
string peer_key = 2; // hex string

}

message PeersResponse {
repeated Peer peers = 1;

}

Response Structure

A list of peers with their addresses and public keys is returned.

Field Description Constraint Example
Peers array of peers from the network non-empty list of peers {Peer{“peer.domain.com”,

“292a8714694095edce6be799398ed5d6244cd7be37eb813106b217d850d261f2”},
. . . }

Possible Stateful Validation Errors

Code Error
Name

Description How to solve

1 Could not
get peers

Internal error happened Try again or contact developers

2 No such
permissions

Query creator does not have enough
permissions to get peers

Append a role with can_get_blocks or can_get_peers
permission

3 Invalid sig-
natures

Signatures of this query did not pass
validation

Add more signatures and make sure query’s signa-
tures are a subset of account’s signatories

Warning: Currently Get Peers query uses “can_get_blocks” permission for compatibility purposes. Later that
will be changed to “can_get_peers” with the next major Iroha release.

106 Chapter 9. Develop on Iroha



Iroha handbook: installation, getting started, API, guides, and troubleshooting, Release

Fetch Commits

Purpose

To get new blocks as soon as they are committed, a user can invoke FetchCommits RPC call to Iroha network.

Request Schema

No request arguments are needed

Response Schema

message BlockQueryResponse {
oneof response {
BlockResponse block_response = 1;
BlockErrorResponse block_error_response = 2;

}
}

message BlockResponse {
Block block = 1;

}

message BlockErrorResponse {
string message = 1;

}

Please note that it returns a stream of BlockQueryResponse.

Response Structure

Field Description Constraint Example
Block Iroha block only committed blocks { ‘block_v1’: . . . .}

Possible Stateful Validation Errors

Code Error Name Description How to solve
1 Could not get

block streaming
Internal error happened Try again or contact developers

2 No such permis-
sions

Query’s creator does not have any
of the permissions to get blocks

Grant can_get_block permission

3 Invalid signa-
tures

Signatures of this query did not pass
validation

Add more signatures and make sure query’s sig-
natures are a subset of account’s signatories

Note: BlockErrorResponse contains only message field. In case of stateful validation error it will be “stateful invalid”.
GetBlock requires same can_get_block permission. Therefore, it can be used with height = 1 (first block is always
present) to check for invalid signatories or insufficient permissions.

9.3. Iroha API reference 107

permissions.html#can-get-blocks
permissions.html#can-get-blocks


Iroha handbook: installation, getting started, API, guides, and troubleshooting, Release

Example

You can check an example how to use this query here: https://github.com/x3medima17/twitter

9.3.3 Permissions

Hyperledger Iroha uses a role-based access control system to limit actions of its users. This system greatly helps to
implement use cases involving user groups having different access levels — ranging from the weak users, who can’t
even receive asset transfer to the super-users. The beauty of our permission system is that you don’t have to have a
super-user in your Iroha setup or use all the possible permissions: you can create segregated and lightweight roles.

Maintenance of the system involves setting up roles and permissions, that are included in the roles. This might be
done at the initial step of system deployment — in genesis block, or later when Iroha network is up and running, roles
can be changed (if there is a role that can do that :)

This section will help you to understand permissions and give you an idea of how to create roles including certain per-
missions. Each permission is provided with an example written in Python that demonstrates the way of transaction or
query creation, which require specific permission. Every example uses commons.py module, which listing is available
at Supplementary Sources section.

9.3.4 List of Permissions

Permission Name Category Type
root All Categories Command and Query
can_create_account Account Command
can_set_detail Account Command
can_set_my_account_detail grantable Account Command
can_create_asset Asset Command
can_receive Asset Command
can_transfer Asset Command
can_transfer_my_assets grantable Asset Command
can_add_asset_qty Asset Quantity Command
can_subtract_asset_qty Asset Quantity Command
can_add_domain_asset_qty Asset Quantity Command
can_subtract_domain_asset_qty Asset Quantity Command
can_create_domain Domain Command
can_grant_can_add_my_signatory Grant Command
can_grant_can_remove_my_signatory Grant Command
can_grant_can_set_my_account_detail Grant Command
can_grant_can_set_my_quorum Grant Command
can_grant_can_transfer_my_assets Grant Command
can_add_peer Peer Command
can_remove_peer Peer Command
can_append_role Role Command
can_create_role Role Command
can_detach_role Role Command
can_add_my_signatory grantable Signatory Command
can_add_signatory Signatory Command
can_remove_my_signatory grantable Signatory Command
can_remove_signatory Signatory Command

Continued on next page

108 Chapter 9. Develop on Iroha

https://github.com/x3medima17/twitter


Iroha handbook: installation, getting started, API, guides, and troubleshooting, Release

Table 9.1 – continued from previous page
Permission Name Category Type
can_set_my_quorum grantable Signatory Command
can_set_quorum Signatory Command
can_call_engine Engine Command
can_call_engine_on_my_behalf grantable Engine Command
can_grant_can_call_engine_on_my_behalf Grant Command
can_get_all_acc_detail Account Query
can_get_all_accounts Account Query
can_get_domain_acc_detail Account Query
can_get_domain_accounts Account Query
can_get_my_acc_detail Account Query
can_get_my_account Account Query
can_get_all_acc_ast Account Asset Query
can_get_domain_acc_ast Account Asset Query
can_get_my_acc_ast Account Asset Query
can_get_all_acc_ast_txs Account Asset Transaction Query
can_get_domain_acc_ast_txs Account Asset Transaction Query
can_get_my_acc_ast_txs Account Asset Transaction Query
can_get_all_acc_txs Account Transaction Query
can_get_domain_acc_txs Account Transaction Query
can_get_my_acc_txs Account Transaction Query
can_read_assets Asset Query
can_get_blocks Block Stream Query
can_get_roles Role Query
can_get_all_signatories Signatory Query
can_get_domain_signatories Signatory Query
can_get_my_signatories Signatory Query
can_get_all_txs Transaction Query
can_get_my_txs Transaction Query
can_get_peers Peer Query
can_get_my_engine_receipts Engine receipts Query
can_get_domain_engine_receipts Engine receipts Query
can_get_all_engine_receipts Engine receipts Query

9.3.5 Permissions Detailed

Command and Query-related permissions

All Categories

root

Allows executing all commands and queries without other permissions.

Note: This permission allows you to create and assign any roles with any permissions.

Example

Admin with root permission can create and assign a role with rights that he does not have.

9.3. Iroha API reference 109

concepts_architecture/glossary.rst#concepts_architecture/glossary.rst
concepts_architecture/glossary.rst#concepts_architecture/glossary.rst


Iroha handbook: installation, getting started, API, guides, and troubleshooting, Release

Command-related permissions

Account

can_create_account

Allows creating new accounts.

Related API method: Create Account

Example

Admin creates domain “test” that contains only can_create_account permission and Alice account in that domain.
Alice can create Bob account.

1 admin = commons.new_user('admin@test')
2 alice = commons.new_user('alice@test')
3 bob = commons.new_user('bob@test')
4 iroha = Iroha(admin['id'])
5

6

7 @commons.hex
8 def genesis_tx():
9 test_permissions = [primitive_pb2.can_create_account]

10 genesis_commands = commons.genesis_block(admin, alice, test_permissions)
11 tx = iroha.transaction(genesis_commands)
12 IrohaCrypto.sign_transaction(tx, admin['key'])
13 return tx
14

15

16 @commons.hex
17 def create_account_tx():
18 tx = iroha.transaction([
19 iroha.command('CreateAccount', account_name='bob', domain_id='test', public_

→˓key=bob['key'])
20 ], creator_account=alice['id'])
21 IrohaCrypto.sign_transaction(tx, alice['key'])
22 return tx

can_set_detail

Allows setting account detail.

The permission allows setting details to other accounts. Another way to set detail without can_set_detail permission
is to grant can_set_my_account_detail permission to someone. In order to grant, transaction creator should have
can_grant_can_set_my_account_detail permission.

110 Chapter 9. Develop on Iroha

concepts_architecture/glossary.rst#concepts_architecture/glossary.rst
../api/commands.html#create-account
concepts_architecture/glossary.rst#concepts_architecture/glossary.rst
concepts_architecture/glossary.rst#concepts_architecture/glossary.rst
concepts_architecture/glossary.rst#concepts_architecture/glossary.rst


Iroha handbook: installation, getting started, API, guides, and troubleshooting, Release

Note: Transaction creator can always set detail for own account even without that permission.

Related API method: Set Account Detail

Example

Admin creates domain “test” that contains only can_set_detail permission and Alice account in that domain. Alice
can set detail for Admin account.

1 admin = commons.new_user('admin@test')
2 alice = commons.new_user('alice@test')
3 iroha = Iroha(admin['id'])
4

5

6 @commons.hex
7 def genesis_tx():
8 test_permissions = [primitive_pb2.can_set_detail]
9 genesis_commands = commons.genesis_block(admin, alice, test_permissions)

10 tx = iroha.transaction(genesis_commands)
11 IrohaCrypto.sign_transaction(tx, admin['key'])
12 return tx
13

14

15 @commons.hex
16 def set_account_detail_tx():
17 tx = iroha.transaction([
18 iroha.command('SetAccountDetail', account_id=admin['id'], key='fav_color',

→˓value='red')
19 ], creator_account=alice['id'])
20 IrohaCrypto.sign_transaction(tx, alice['key'])
21 return tx

can_set_my_account_detail

Hint: This is a grantable permission.

Permission that allows a specified account to set details for the another specified account.

Note: To grant the permission an account should already have a role with can_grant_can_set_my_account_detail
permission.

Related API method: Set Account Detail

9.3. Iroha API reference 111

../api/commands.html#set-account-detail
concepts_architecture/glossary.rst#concepts_architecture/glossary.rst
concepts_architecture/glossary.rst#concepts_architecture/glossary.rst
../api/commands.html#set-account-detail


Iroha handbook: installation, getting started, API, guides, and troubleshooting, Release

Example

Admin creates domain “test” that contains only can_grant_can_set_my_account_detail permission and two accounts
for Alice and Bob in that domain. Alice grants to Bob can_set_my_account_detail permission. Bob can set detail for
Alice account.

1 admin = commons.new_user('admin@test')
2 alice = commons.new_user('alice@test')
3 bob = commons.new_user('bob@test')
4 iroha = Iroha(admin['id'])
5

6

7 @commons.hex
8 def genesis_tx():
9 test_permissions = [primitive_pb2.can_grant_can_set_my_account_detail]

10 genesis_commands = commons.genesis_block(admin, alice, test_permissions)
11 genesis_commands.append(
12 iroha.command('CreateAccount', account_name='bob', domain_id='test',
13 public_key=IrohaCrypto.derive_public_key(bob['key']))
14 )
15 tx = iroha.transaction(genesis_commands)
16 IrohaCrypto.sign_transaction(tx, admin['key'])
17 return tx
18

19

20 @commons.hex
21 def grant_permission_tx():
22 tx = iroha.transaction([
23 iroha.command('GrantPermission', account_id=bob['id'], permission=primitive_

→˓pb2.can_set_my_account_detail)
24 ], creator_account=alice['id'])
25 IrohaCrypto.sign_transaction(tx, alice['key'])
26 return tx
27

28

29 @commons.hex
30 def set_detail_tx():
31 tx = iroha.transaction([
32 iroha.command('SetAccountDetail', account_id=alice['id'], key='fav_year',

→˓value='2019')
33 ], creator_account=bob['id'])
34 IrohaCrypto.sign_transaction(tx, bob['key'])
35 return tx

Asset

can_create_asset

Allows creating new assets.

Related API method: Create Asset

112 Chapter 9. Develop on Iroha

concepts_architecture/glossary.rst#concepts_architecture/glossary.rst
../api/commands.html#create-asset


Iroha handbook: installation, getting started, API, guides, and troubleshooting, Release

Example

Admin creates domain “test” that contains only can_create_asset permission and Alice account in that domain. Alice
can create new assets.

1 admin = commons.new_user('admin@test')
2 alice = commons.new_user('alice@test')
3 iroha = Iroha(admin['id'])
4

5

6 @commons.hex
7 def genesis_tx():
8 test_permissions = [primitive_pb2.can_create_asset]
9 genesis_commands = commons.genesis_block(admin, alice, test_permissions)

10 tx = iroha.transaction(genesis_commands)
11 IrohaCrypto.sign_transaction(tx, admin['key'])
12 return tx
13

14

15 @commons.hex
16 def create_asset_tx():
17 tx = iroha.transaction([
18 iroha.command('CreateAsset', asset_name='coin', domain_id='test', precision=2)
19 ], creator_account=alice['id'])
20 IrohaCrypto.sign_transaction(tx, alice['key'])
21 return tx

can_receive

Allows account receive assets.

Related API method: Transfer Asset

Example

Admin creates domain “test” that contains can_receive and can_transfer permissions and two accounts for Alice and
Bob. Admin creates “coin” asset, adds some quantity of it and transfers the asset to Alice. Alice can transfer assets to
Bob (Alice has can_transfer permission and Bob has can_receive permission).

1 admin = commons.new_user('admin@test')
2 alice = commons.new_user('alice@test')
3 bob = commons.new_user('bob@test')
4 iroha = Iroha(admin['id'])
5

6

7 @commons.hex

9.3. Iroha API reference 113

concepts_architecture/glossary.rst#concepts_architecture/glossary.rst
concepts_architecture/glossary.rst#concepts_architecture/glossary.rst
../api/commands.html#transfer-asset


Iroha handbook: installation, getting started, API, guides, and troubleshooting, Release

8 def genesis_tx():
9 test_permissions = [primitive_pb2.can_transfer, primitive_pb2.can_receive]

10 genesis_commands = commons.genesis_block(admin, alice, test_permissions)
11 genesis_commands.extend([
12 iroha.command('CreateAccount', account_name='bob', domain_id='test',
13 public_key=IrohaCrypto.derive_public_key(bob['key'])),
14 iroha.command('CreateAsset', asset_name='coin', domain_id='test',

→˓precision=2),
15 iroha.command('AddAssetQuantity', asset_id='coin#test', amount='90.00'),
16 iroha.command('TransferAsset',
17 src_account_id=admin['id'],
18 dest_account_id=alice['id'],
19 asset_id='coin#test',
20 description='init top up',
21 amount='90.00')
22 ])
23 tx = iroha.transaction(genesis_commands)
24 IrohaCrypto.sign_transaction(tx, admin['key'])
25 return tx
26

27

28 @commons.hex
29 def transfer_asset_tx():
30 tx = iroha.transaction([
31 iroha.command('TransferAsset',
32 src_account_id=alice['id'],
33 dest_account_id=bob['id'],
34 asset_id='coin#test',
35 description='transfer to Bob',
36 amount='60.00')
37 ], creator_account=alice['id'])
38 IrohaCrypto.sign_transaction(tx, alice['key'])
39 return tx

can_transfer

Allows sending assets from an account of transaction creator.

You can transfer an asset from one domain to another, even if the other domain does not have an asset with the same
name.

Note: Destination account should have can_receive permission.

Related API method: Transfer Asset

1 #
2 # Copyright Soramitsu Co., Ltd. All Rights Reserved.
3 # SPDX-License-Identifier: Apache-2.0
4 #
5

6 import can_receive
7

114 Chapter 9. Develop on Iroha

concepts_architecture/glossary.rst#concepts_architecture/glossary.rst
concepts_architecture/glossary.rst#concepts_architecture/glossary.rst
concepts_architecture/glossary.rst#concepts_architecture/glossary.rst
concepts_architecture/glossary.rst#concepts_architecture/glossary.rst
../api/commands.html#transfer-asset


Iroha handbook: installation, getting started, API, guides, and troubleshooting, Release

8 # Please see example for can_receive permission.
9 # By design can_receive and can_transfer permissions

10 # can be tested only together.

can_transfer_my_assets

Hint: This is a grantable permission.

Permission that allows a specified account to transfer assets of another specified account.

See the example (to be done) for the usage details.

Related API method: Transfer Asset

Example

Admin creates domain “test” that contains can_grant_can_transfer_my_assets, can_receive, can_transfer permissions
and two accounts for Alice and Bob in that domain. Admin issues some amount of “coin” asset and transfers it to
Alice. Alice grants to Bob can_transfer_my_assets permission. Bob can transfer Alice’s assets to any account that
has can_receive permission, for example, to Admin.

1 admin = commons.new_user('admin@test')
2 alice = commons.new_user('alice@test')
3 bob = commons.new_user('bob@test')
4 iroha = Iroha(admin['id'])
5

6

7 @commons.hex
8 def genesis_tx():
9 test_permissions = [

10 primitive_pb2.can_grant_can_transfer_my_assets,
11 primitive_pb2.can_receive,
12 primitive_pb2.can_transfer
13 ]
14 genesis_commands = commons.genesis_block(admin, alice, test_permissions)
15 genesis_commands.extend([
16 iroha.command('CreateAccount', account_name='bob', domain_id='test',
17 public_key=IrohaCrypto.derive_public_key(bob['key'])),
18 iroha.command('CreateAsset', asset_name='coin', domain_id='test',

→˓precision=2),
19 iroha.command('AddAssetQuantity', asset_id='coin#test', amount='100.00'),
20 iroha.command('TransferAsset',
21 src_account_id=admin['id'],
22 dest_account_id=alice['id'],
23 asset_id='coin#test',
24 description='init top up',
25 amount='90.00')
26 ])

9.3. Iroha API reference 115

concepts_architecture/glossary.rst#concepts_architecture/glossary.rst
concepts_architecture/glossary.rst#concepts_architecture/glossary.rst
concepts_architecture/glossary.rst#concepts_architecture/glossary.rst
../api/commands.html#transfer-asset


Iroha handbook: installation, getting started, API, guides, and troubleshooting, Release

27 tx = iroha.transaction(genesis_commands)
28 IrohaCrypto.sign_transaction(tx, admin['key'])
29 return tx
30

31

32 @commons.hex
33 def grant_permission_tx():
34 tx = iroha.transaction([
35 iroha.command('GrantPermission', account_id=bob['id'], permission=primitive_

→˓pb2.can_transfer_my_assets)
36 ], creator_account=alice['id'])
37 IrohaCrypto.sign_transaction(tx, alice['key'])
38 return tx
39

40

41 @commons.hex
42 def transfer_asset_tx():
43 tx = iroha.transaction([
44 iroha.command('TransferAsset',
45 src_account_id=alice['id'],
46 dest_account_id=admin['id'],
47 asset_id='coin#test',
48 description='transfer from Alice to Admin by Bob',
49 amount='60.00')
50 ], creator_account=bob['id'])
51 IrohaCrypto.sign_transaction(tx, bob['key'])
52 return tx

Asset Quantity

can_add_asset_qty

Allows issuing assets.

The corresponding command can be executed only for an account of transaction creator and only if that account has a
role with the permission.

Related API method: Add Asset Quantity

Example

Admin creates domain “test” that contains only can_add_asset_qty permission and Alice account in that domain.
Admin creates “coin” asset. Alice can add to own account any amount of any asset (e.g. “coin” asset).

1 admin = commons.new_user('admin@test')
2 alice = commons.new_user('alice@test')
3 iroha = Iroha(admin['id'])
4

5

116 Chapter 9. Develop on Iroha

concepts_architecture/glossary.rst#concepts_architecture/glossary.rst
concepts_architecture/glossary.rst#concepts_architecture/glossary.rst
concepts_architecture/glossary.rst#concepts_architecture/glossary.rst
concepts_architecture/glossary.rst#concepts_architecture/glossary.rst
concepts_architecture/glossary.rst#concepts_architecture/glossary.rst
concepts_architecture/glossary.rst#concepts_architecture/glossary.rst
../api/commands.html#add-asset-quantity


Iroha handbook: installation, getting started, API, guides, and troubleshooting, Release

6 @commons.hex
7 def genesis_tx():
8 test_permissions = [primitive_pb2.can_add_asset_qty]
9 genesis_commands = commons.genesis_block(admin, alice, test_permissions)

10 genesis_commands.append(
11 iroha.command('CreateAsset', asset_name='coin', domain_id='test',

→˓precision=2))
12 tx = iroha.transaction(genesis_commands)
13 IrohaCrypto.sign_transaction(tx, admin['key'])
14 return tx
15

16

17 @commons.hex
18 def add_asset_tx():
19 tx = iroha.transaction([
20 iroha.command('AddAssetQuantity', asset_id='coin#test', amount='5000.99')
21 ], creator_account=alice['id'])
22 IrohaCrypto.sign_transaction(tx, alice['key'])
23 return tx

can_subtract_asset_qty

Allows burning assets.

The corresponding command can be executed only for an account of transaction creator and only if that account has a
role with the permission.

Related API method: Subtract Asset Quantity

Example

Admin creates domain “test” that contains only can_subtract_asset_qty permission and Alice account in that domain.
Admin issues some amount of “coin” asset and transfers some amount of “coin” asset to Alice. Alice can burn any
amount of “coin” assets.

1 admin = commons.new_user('admin@test')
2 alice = commons.new_user('alice@test')
3 iroha = Iroha(admin['id'])
4

5

6 @commons.hex
7 def genesis_tx():
8 test_permissions = [primitive_pb2.can_subtract_asset_qty]
9 genesis_commands = commons.genesis_block(admin, alice, test_permissions)

10 genesis_commands.extend([
11 iroha.command('CreateAsset', asset_name='coin', domain_id='test',

→˓precision=2),
12 iroha.command('AddAssetQuantity', asset_id='coin#test', amount='1000.00'),
13 iroha.command('TransferAsset',

9.3. Iroha API reference 117

concepts_architecture/glossary.rst#concepts_architecture/glossary.rst
concepts_architecture/glossary.rst#concepts_architecture/glossary.rst
concepts_architecture/glossary.rst#concepts_architecture/glossary.rst
concepts_architecture/glossary.rst#concepts_architecture/glossary.rst
concepts_architecture/glossary.rst#concepts_architecture/glossary.rst
concepts_architecture/glossary.rst#concepts_architecture/glossary.rst
../api/commands.html#subtract-asset-quantity


Iroha handbook: installation, getting started, API, guides, and troubleshooting, Release

14 src_account_id=admin['id'],
15 dest_account_id=alice['id'],
16 asset_id='coin#test',
17 description='init top up',
18 amount='999.99')
19 ])
20 tx = iroha.transaction(genesis_commands)
21 IrohaCrypto.sign_transaction(tx, admin['key'])
22 return tx
23

24

25 @commons.hex
26 def subtract_asset_tx():
27 tx = iroha.transaction([
28 iroha.command('SubtractAssetQuantity', asset_id='coin#test', amount='999.99')
29 ], creator_account=alice['id'])
30 IrohaCrypto.sign_transaction(tx, alice['key'])
31 return tx

can_add_domain_asset_qty

Allows issuing assets only in own domain.

The corresponding command can be executed only for an account of transaction creator and only if that account has a
role with the permission and only for assets in creator’s domain.

Related API method: Add Asset Quantity

1 #
2 # Copyright Soramitsu Co., Ltd. All Rights Reserved.
3 # SPDX-License-Identifier: Apache-2.0
4 #
5

6 import can_add_asset_qty
7

8 # Please see example for can_add_asset_qty permission.
9

10 # TODO igor-egorov 21.01.2019 IR-240

can_subtract_domain_asset_qty

Allows burning assets only in own domain.

The corresponding command can be executed only for an account of transaction creator and only if that account has a
role with the permission and only for assets in creator’s domain.

Related API method: Subtract Asset Quantity

118 Chapter 9. Develop on Iroha

concepts_architecture/glossary.rst#concepts_architecture/glossary.rst
concepts_architecture/glossary.rst#concepts_architecture/glossary.rst
concepts_architecture/glossary.rst#concepts_architecture/glossary.rst
concepts_architecture/glossary.rst#concepts_architecture/glossary.rst
concepts_architecture/glossary.rst#concepts_architecture/glossary.rst
concepts_architecture/glossary.rst#concepts_architecture/glossary.rst
concepts_architecture/glossary.rst#concepts_architecture/glossary.rst
../api/commands.html#add-asset-quantity
concepts_architecture/glossary.rst#concepts_architecture/glossary.rst
concepts_architecture/glossary.rst#concepts_architecture/glossary.rst
concepts_architecture/glossary.rst#concepts_architecture/glossary.rst
concepts_architecture/glossary.rst#concepts_architecture/glossary.rst
concepts_architecture/glossary.rst#concepts_architecture/glossary.rst
concepts_architecture/glossary.rst#concepts_architecture/glossary.rst
concepts_architecture/glossary.rst#concepts_architecture/glossary.rst
../api/commands.html#subtract-asset-quantity


Iroha handbook: installation, getting started, API, guides, and troubleshooting, Release

1 #
2 # Copyright Soramitsu Co., Ltd. All Rights Reserved.
3 # SPDX-License-Identifier: Apache-2.0
4 #
5

6 import can_subtract_asset_qty
7

8 # Please see example for can_subtract_asset_qty permission.
9

10 # TODO igor-egorov 21.01.2019 IR-240

Domain

can_create_domain

Allows creating new domains within the system.

Related API method: Create Domain

Example

Admin creates domain that contains only can_create_domain permission and Alice account in that domain. Alice can
create new domains.

1 admin = commons.new_user('admin@test')
2 alice = commons.new_user('alice@test')
3 iroha = Iroha(admin['id'])
4

5

6 @commons.hex
7 def genesis_tx():
8 test_permissions = [primitive_pb2.can_create_domain]
9 genesis_commands = commons.genesis_block(admin, alice, test_permissions)

10 tx = iroha.transaction(genesis_commands)
11 IrohaCrypto.sign_transaction(tx, admin['key'])
12 return tx
13

14

15 @commons.hex
16 def create_domain_tx():
17 # 'test_role' was created in genesis transaction
18 tx = iroha.transaction([
19 iroha.command('CreateDomain', domain_id='another-domain', default_role='test_

→˓role')
20 ], creator_account=alice['id'])
21 IrohaCrypto.sign_transaction(tx, alice['key'])
22 return tx

9.3. Iroha API reference 119

concepts_architecture/glossary.rst#concepts_architecture/glossary.rst
../api/commands.html#create-domain


Iroha handbook: installation, getting started, API, guides, and troubleshooting, Release

Grant

can_grant_can_add_my_signatory

Allows role owners grant can_add_my_signatory permission.

Related API methods: Grant Permission, Revoke Permission

Example

Admin creates domain that contains only can_grant_can_add_my_signatory permission and two accounts for Alice
and Bob in that domain. Alice can grant to Bob and revoke can_add_my_signatory permission.

1 admin = commons.new_user('admin@test')
2 alice = commons.new_user('alice@test')
3 bob = commons.new_user('bob@test')
4 iroha = Iroha(admin['id'])
5

6

7 @commons.hex
8 def genesis_tx():
9 test_permissions = [primitive_pb2.can_grant_can_add_my_signatory]

10 genesis_commands = commons.genesis_block(admin, alice, test_permissions)
11 genesis_commands.append(
12 iroha.command('CreateAccount', account_name='bob', domain_id='test',
13 public_key=IrohaCrypto.derive_public_key(bob['key'])))
14 tx = iroha.transaction(genesis_commands)
15 IrohaCrypto.sign_transaction(tx, admin['key'])
16 return tx
17

18

19 @commons.hex
20 def grant_can_add_my_signatory_tx():
21 tx = iroha.transaction([
22 iroha.command('GrantPermission', account_id=bob['id'], permission=primitive_

→˓pb2.can_add_my_signatory)
23 ], creator_account=alice['id'])
24 IrohaCrypto.sign_transaction(tx, alice['key'])
25 return tx
26

27

28 @commons.hex
29 def revoke_can_add_my_signatory_tx():
30 tx = iroha.transaction([
31 iroha.command('RevokePermission', account_id=bob['id'], permission=primitive_

→˓pb2.can_add_my_signatory)
32 ], creator_account=alice['id'])
33 IrohaCrypto.sign_transaction(tx, alice['key'])
34 return tx

120 Chapter 9. Develop on Iroha

concepts_architecture/glossary.rst#concepts_architecture/glossary.rst
concepts_architecture/glossary.rst#concepts_architecture/glossary.rst
../api/commands.html#grant-permission
../api/commands.html#revoke-permission


Iroha handbook: installation, getting started, API, guides, and troubleshooting, Release

can_grant_can_remove_my_signatory

Allows role owners grant can_remove_my_signatory permission.

Related API methods: Grant Permission, Revoke Permission

Example

Admin creates domain that contains only can_grant_can_remove_my_signatory permission and two accounts for
Alice and Bob in that domain. Alice can grant to Bob and revoke can_remove_my_signatory permission.

1 admin = commons.new_user('admin@test')
2 alice = commons.new_user('alice@test')
3 bob = commons.new_user('bob@test')
4 iroha = Iroha(admin['id'])
5

6

7 @commons.hex
8 def genesis_tx():
9 test_permissions = [primitive_pb2.can_grant_can_remove_my_signatory]

10 genesis_commands = commons.genesis_block(admin, alice, test_permissions)
11 genesis_commands.append(
12 iroha.command('CreateAccount', account_name='bob', domain_id='test',
13 public_key=IrohaCrypto.derive_public_key(bob['key'])))
14 tx = iroha.transaction(genesis_commands)
15 IrohaCrypto.sign_transaction(tx, admin['key'])
16 return tx
17

18

19 @commons.hex
20 def grant_can_remove_my_signatory_tx():
21 tx = iroha.transaction([
22 iroha.command('GrantPermission', account_id=bob['id'], permission=primitive_

→˓pb2.can_remove_my_signatory)
23 ], creator_account=alice['id'])
24 IrohaCrypto.sign_transaction(tx, alice['key'])
25 return tx
26

27

28 @commons.hex
29 def revoke_can_remove_my_signatory_tx():
30 tx = iroha.transaction([
31 iroha.command('RevokePermission', account_id=bob['id'], permission=primitive_

→˓pb2.can_remove_my_signatory)
32 ], creator_account=alice['id'])
33 IrohaCrypto.sign_transaction(tx, alice['key'])
34 return tx

9.3. Iroha API reference 121

concepts_architecture/glossary.rst#concepts_architecture/glossary.rst
concepts_architecture/glossary.rst#concepts_architecture/glossary.rst
../api/commands.html#grant-permission
../api/commands.html#revoke-permission


Iroha handbook: installation, getting started, API, guides, and troubleshooting, Release

can_grant_can_set_my_account_detail

Allows role owners grant can_set_my_account_detail permission.

Related API methods: Grant Permission, Revoke Permission

Example

Admin creates domain that contains only can_grant_can_set_my_account_detail permission and two accounts for
Alice and Bob in that domain. Alice can grant to Bob and revoke can_set_my_account_detail permission.

1 admin = commons.new_user('admin@test')
2 alice = commons.new_user('alice@test')
3 bob = commons.new_user('bob@test')
4 iroha = Iroha(admin['id'])
5

6

7 @commons.hex
8 def genesis_tx():
9 test_permissions = [primitive_pb2.can_grant_can_set_my_account_detail]

10 genesis_commands = commons.genesis_block(admin, alice, test_permissions)
11 genesis_commands.append(
12 iroha.command('CreateAccount', account_name='bob', domain_id='test',
13 public_key=IrohaCrypto.derive_public_key(bob['key'])))
14 tx = iroha.transaction(genesis_commands)
15 IrohaCrypto.sign_transaction(tx, admin['key'])
16 return tx
17

18

19 @commons.hex
20 def grant_can_set_my_account_detail_tx():
21 tx = iroha.transaction([
22 iroha.command('GrantPermission', account_id=bob['id'], permission=primitive_

→˓pb2.can_set_my_account_detail)
23 ], creator_account=alice['id'])
24 IrohaCrypto.sign_transaction(tx, alice['key'])
25 return tx
26

27

28 @commons.hex
29 def revoke_can_set_my_account_detail_tx():
30 tx = iroha.transaction([
31 iroha.command('RevokePermission', account_id=bob['id'], permission=primitive_

→˓pb2.can_set_my_account_detail)
32 ], creator_account=alice['id'])
33 IrohaCrypto.sign_transaction(tx, alice['key'])
34 return tx

122 Chapter 9. Develop on Iroha

concepts_architecture/glossary.rst#concepts_architecture/glossary.rst
concepts_architecture/glossary.rst#concepts_architecture/glossary.rst
../api/commands.html#grant-permission
../api/commands.html#revoke-permission


Iroha handbook: installation, getting started, API, guides, and troubleshooting, Release

can_grant_can_set_my_quorum

Allows role owners grant can_set_my_quorum permission.

Related API methods: Grant Permission, Revoke Permission

Example

Admin creates domain that contains only can_grant_can_set_my_quorum permission and two accounts for Alice and
Bob in that domain. Alice can grant to Bob and revoke can_set_my_quorum permission.

1 admin = commons.new_user('admin@test')
2 alice = commons.new_user('alice@test')
3 bob = commons.new_user('bob@test')
4 iroha = Iroha(admin['id'])
5

6

7 @commons.hex
8 def genesis_tx():
9 test_permissions = [primitive_pb2.can_grant_can_set_my_quorum]

10 genesis_commands = commons.genesis_block(admin, alice, test_permissions)
11 genesis_commands.append(
12 iroha.command('CreateAccount', account_name='bob', domain_id='test',
13 public_key=IrohaCrypto.derive_public_key(bob['key']))
14 )
15 tx = iroha.transaction(genesis_commands)
16 IrohaCrypto.sign_transaction(tx, admin['key'])
17 return tx
18

19

20 @commons.hex
21 def grant_can_set_my_quorum_tx():
22 tx = iroha.transaction([
23 iroha.command('GrantPermission', account_id=bob['id'], permission=primitive_

→˓pb2.can_set_my_quorum)
24 ], creator_account=alice['id'])
25 IrohaCrypto.sign_transaction(tx, alice['key'])
26 return tx
27

28

29 @commons.hex
30 def revoke_can_set_my_quorum_tx():
31 tx = iroha.transaction([
32 iroha.command('RevokePermission', account_id=bob['id'], permission=primitive_

→˓pb2.can_set_my_quorum)
33 ], creator_account=alice['id'])
34 IrohaCrypto.sign_transaction(tx, alice['key'])
35 return tx

9.3. Iroha API reference 123

concepts_architecture/glossary.rst#concepts_architecture/glossary.rst
concepts_architecture/glossary.rst#concepts_architecture/glossary.rst
../api/commands.html#grant-permission
../api/commands.html#revoke-permission


Iroha handbook: installation, getting started, API, guides, and troubleshooting, Release

can_grant_can_transfer_my_assets

Allows role owners grant can_transfer_my_assets permission.

Related API methods: Grant Permission, Revoke Permission

Example

Admin creates domain that contains only can_grant_can_transfer_my_assets permission and two accounts for Alice
and Bob in that domain. Alice can grant to Bob and revoke can_transfer_my_assets permission.

1 admin = commons.new_user('admin@test')
2 alice = commons.new_user('alice@test')
3 bob = commons.new_user('bob@test')
4 iroha = Iroha(admin['id'])
5

6

7 @commons.hex
8 def genesis_tx():
9 test_permissions = [

10 primitive_pb2.can_grant_can_transfer_my_assets,
11 primitive_pb2.can_receive,
12 primitive_pb2.can_transfer
13 ]
14 genesis_commands = commons.genesis_block(admin, alice, test_permissions)
15 genesis_commands.extend([
16 iroha.command('CreateAccount', account_name='bob', domain_id='test',
17 public_key=IrohaCrypto.derive_public_key(bob['key'])),
18 iroha.command('CreateAsset', asset_name='coin', domain_id='test',

→˓precision=2),
19 iroha.command('AddAssetQuantity', asset_id='coin#test', amount='100.00'),
20 iroha.command('TransferAsset',
21 src_account_id=admin['id'],
22 dest_account_id=alice['id'],
23 asset_id='coin#test',
24 description='init top up',
25 amount='90.00')
26 ])
27 tx = iroha.transaction(genesis_commands)
28 IrohaCrypto.sign_transaction(tx, admin['key'])
29 return tx
30

31

32 @commons.hex
33 def grant_can_transfer_my_assets_tx():
34 tx = iroha.transaction([
35 iroha.command('GrantPermission', account_id=bob['id'], permission=primitive_

→˓pb2.can_transfer_my_assets)
36 ], creator_account=alice['id'])
37 IrohaCrypto.sign_transaction(tx, alice['key'])
38 return tx

124 Chapter 9. Develop on Iroha

concepts_architecture/glossary.rst#concepts_architecture/glossary.rst
concepts_architecture/glossary.rst#concepts_architecture/glossary.rst
../api/commands.html#grant-permission
../api/commands.html#revoke-permission


Iroha handbook: installation, getting started, API, guides, and troubleshooting, Release

39

40

41 @commons.hex
42 def revoke_can_transfer_my_assets_tx():
43 tx = iroha.transaction([
44 iroha.command('RevokePermission', account_id=bob['id'], permission=primitive_

→˓pb2.can_transfer_my_assets)
45 ], creator_account=alice['id'])
46 IrohaCrypto.sign_transaction(tx, alice['key'])
47 return tx

Peer

can_add_peer

Allows adding peers to the network.

A new peer will be a valid participant in the next consensus round after an agreement on transaction containing
“addPeer” command.

Related API method: Add Peer

Example

Admin creates domain that contains only can_add_peer permission and Alice account in that domain. Alice can add
new peers.

1 admin = commons.new_user('admin@test')
2 alice = commons.new_user('alice@test')
3 iroha = Iroha(admin['id'])
4

5

6 @commons.hex
7 def genesis_tx():
8 test_permissions = [primitive_pb2.can_add_peer]
9 genesis_commands = commons.genesis_block(admin, alice, test_permissions)

10 tx = iroha.transaction(genesis_commands)
11 IrohaCrypto.sign_transaction(tx, admin['key'])
12 return tx
13

14

15 @commons.hex
16 def add_peer_tx():
17 peer_key = IrohaCrypto.private_key()
18 peer = primitive_pb2.Peer()
19 peer.address = '192.168.10.10:50541'
20 peer.peer_key = IrohaCrypto.derive_public_key(peer_key)
21 tx = iroha.transaction([
22 iroha.command('AddPeer', peer=peer)

9.3. Iroha API reference 125

concepts_architecture/glossary.rst#concepts_architecture/glossary.rst
concepts_architecture/glossary.rst#concepts_architecture/glossary.rst
concepts_architecture/glossary.rst#concepts_architecture/glossary.rst
concepts_architecture/glossary.rst#concepts_architecture/glossary.rst
../api/commands.html#add-peer


Iroha handbook: installation, getting started, API, guides, and troubleshooting, Release

23 ], creator_account=alice['id'])
24 IrohaCrypto.sign_transaction(tx, alice['key'])
25 return tx

can_remove_peer

Allows removing peers from the network.

Removed peer will not participate in the next consensus round after an agreement on transaction containing “re-
movePeer” command.

Related API method: Remove Peer

Example

Admin creates domain that contains only can_remove_peer permission and Alice account in that domain. Admin
adds a second peer. Alice can remove existing peers.

1 admin = commons.new_user('admin@test')
2 alice = commons.new_user('alice@test')
3 iroha = Iroha(admin['id'])
4

5 peer_key = IrohaCrypto.private_key()
6 peer = primitive_pb2.Peer()
7 peer.address = '192.168.10.10:50541'
8 peer.peer_key = IrohaCrypto.derive_public_key(peer_key)
9

10

11 @commons.hex
12 def genesis_tx():
13 test_permissions = [primitive_pb2.can_remove_peer]
14 genesis_commands = commons.genesis_block(admin, alice, test_permissions)
15 genesis_commands.append(Iroha.command('AddPeer', peer=peer))
16 tx = iroha.transaction(genesis_commands)
17 IrohaCrypto.sign_transaction(tx, admin['key'])
18 return tx
19

20

21 @commons.hex
22 def remove_peer_tx():
23 peer_key = IrohaCrypto.private_key()
24 tx = iroha.transaction([
25 iroha.command('RemovePeer', public_key=peer.peer_key)
26 ], creator_account=alice['id'])
27 IrohaCrypto.sign_transaction(tx, alice['key'])
28 return tx

126 Chapter 9. Develop on Iroha

concepts_architecture/glossary.rst#concepts_architecture/glossary.rst
concepts_architecture/glossary.rst#concepts_architecture/glossary.rst
concepts_architecture/glossary.rst#concepts_architecture/glossary.rst
concepts_architecture/glossary.rst#concepts_architecture/glossary.rst
../api/commands.html#remove-peer


Iroha handbook: installation, getting started, API, guides, and troubleshooting, Release

Role

can_append_role

Allows appending roles to another account.

You can append only that role that has lesser or the same set of privileges as transaction creator.

Related API method: Append Role

Example

Admin creates domain that contains can_append_role and can_add_peer permissions and two accounts for Alice and
Bob in that domain. Admin creates the second role that contains only can_add_peer permission. Alice can append
role to Bob.

1 admin = commons.new_user('admin@test')
2 alice = commons.new_user('alice@test')
3 bob = commons.new_user('bob@test')
4 iroha = Iroha(admin['id'])
5

6

7 @commons.hex
8 def genesis_tx():
9 test_permissions = [primitive_pb2.can_append_role, primitive_pb2.can_add_peer]

10 second_role_permissions = [primitive_pb2.can_add_peer]
11 genesis_commands = commons.genesis_block(admin, alice, test_permissions)
12 genesis_commands.extend([
13 iroha.command('CreateRole', role_name='second_role', permissions=second_role_

→˓permissions),
14 iroha.command('CreateAccount', account_name='bob', domain_id='test',
15 public_key=IrohaCrypto.derive_public_key(bob['key'])),
16 iroha.command('AppendRole', account_id=alice['id'], role_name='second_role')
17 ])
18 tx = iroha.transaction(genesis_commands)
19 IrohaCrypto.sign_transaction(tx, admin['key'])
20 return tx
21

22

23 @commons.hex
24 def append_role_tx():
25 # Note that you can append only that role that has
26 # lesser or the same set of permissions as transaction creator.
27 tx = iroha.transaction([
28 iroha.command('AppendRole', account_id=bob['id'], role_name='second_role')
29 ], creator_account=alice['id'])
30 IrohaCrypto.sign_transaction(tx, alice['key'])
31 return tx

9.3. Iroha API reference 127

concepts_architecture/glossary.rst#concepts_architecture/glossary.rst
concepts_architecture/glossary.rst#concepts_architecture/glossary.rst
concepts_architecture/glossary.rst#concepts_architecture/glossary.rst
../api/commands.html#append-role


Iroha handbook: installation, getting started, API, guides, and troubleshooting, Release

can_create_role

Allows creating a new role within a system.

Possible set of permissions for a new role is limited to those permissions that transaction creator has.

Related API method: Create Role

Example

Admin creates domain that contains only can_create_role permission and Alice account in that domain. Alice can
create new roles.

1 admin = commons.new_user('admin@test')
2 alice = commons.new_user('alice@test')
3 iroha = Iroha(admin['id'])
4

5

6 @commons.hex
7 def genesis_tx():
8 test_permissions = [primitive_pb2.can_create_role, primitive_pb2.can_create_

→˓domain]
9 genesis_commands = commons.genesis_block(admin, alice, test_permissions)

10 tx = iroha.transaction(genesis_commands)
11 IrohaCrypto.sign_transaction(tx, admin['key'])
12 return tx
13

14

15 @commons.hex
16 def create_role_tx():
17 # You can pick only those permissions that
18 # already belong to account of transaction creator.
19 role_permissions = [primitive_pb2.can_create_domain]
20 tx = iroha.transaction([
21 iroha.command('CreateRole', role_name='newrole', permissions=role_permissions)
22 ], creator_account=alice['id'])
23 IrohaCrypto.sign_transaction(tx, alice['key'])
24 return tx

can_detach_role

Allows revoking a role from a user.

Note: Due to a known issue the permission allows to detach any role without limitations https://soramitsu.atlassian.
net/browse/IR-1468

Related API method: Detach Role

128 Chapter 9. Develop on Iroha

concepts_architecture/glossary.rst#concepts_architecture/glossary.rst
concepts_architecture/glossary.rst#concepts_architecture/glossary.rst
concepts_architecture/glossary.rst#concepts_architecture/glossary.rst
../api/commands.html#create-role
concepts_architecture/glossary.rst#concepts_architecture/glossary.rst
https://soramitsu.atlassian.net/browse/IR-1468
https://soramitsu.atlassian.net/browse/IR-1468
../api/commands.html#detach-role


Iroha handbook: installation, getting started, API, guides, and troubleshooting, Release

Example

Admin creates domain that contains only can_detach_role permission and creates Alice account in that domain.
Admin has two roles test_role and admin_role. Alice can detach test_role from Admin account.

1 admin = commons.new_user('admin@test')
2 alice = commons.new_user('alice@test')
3 iroha = Iroha(admin['id'])
4

5

6 @commons.hex
7 def genesis_tx():
8 test_permissions = [primitive_pb2.can_detach_role]
9 genesis_commands = commons.genesis_block(admin, alice, test_permissions)

10 tx = iroha.transaction(genesis_commands)
11 IrohaCrypto.sign_transaction(tx, admin['key'])
12 return tx
13

14

15 @commons.hex
16 def detach_role_tx():
17 tx = iroha.transaction([
18 iroha.command('DetachRole', account_id=admin['id'], role_name='test_role')
19 ], creator_account=alice['id'])
20 IrohaCrypto.sign_transaction(tx, alice['key'])
21 return tx

Signatory

can_add_my_signatory

Hint: This is a grantable permission.

Permission that allows a specified account to add an extra public key to the another specified account.

Related API method: Add Signatory

Example

Admin creates domain that contains only can_grant_can_add_my_signatory permission and two accounts for Alice
and Bob in that domain. Alice can grant to Bob can_add_my_signatory permission. Bob can add an extra key to
Alice account.

9.3. Iroha API reference 129

concepts_architecture/glossary.rst#concepts_architecture/glossary.rst
concepts_architecture/glossary.rst#concepts_architecture/glossary.rst
../api/commands.html#add-signatory


Iroha handbook: installation, getting started, API, guides, and troubleshooting, Release

1 admin = commons.new_user('admin@test')
2 alice = commons.new_user('alice@test')
3 bob = commons.new_user('bob@test')
4 iroha = Iroha(admin['id'])
5

6

7 @commons.hex
8 def genesis_tx():
9 test_permissions = [primitive_pb2.can_grant_can_add_my_signatory]

10 genesis_commands = commons.genesis_block(admin, alice, test_permissions)
11 genesis_commands.append(
12 iroha.command('CreateAccount', account_name='bob', domain_id='test',
13 public_key=IrohaCrypto.derive_public_key(bob['key'])))
14 tx = iroha.transaction(genesis_commands)
15 IrohaCrypto.sign_transaction(tx, admin['key'])
16 return tx
17

18

19 @commons.hex
20 def grant_can_add_my_signatory_tx():
21 tx = iroha.transaction([
22 iroha.command('GrantPermission', account_id=bob['id'], permission=primitive_

→˓pb2.can_add_my_signatory)
23 ], creator_account=alice['id'])
24 IrohaCrypto.sign_transaction(tx, alice['key'])
25 return tx
26

27

28 @commons.hex
29 def add_signatory_tx():
30 extra_key = IrohaCrypto.private_key()
31 tx = iroha.transaction([
32 iroha.command('AddSignatory', account_id=alice['id'],
33 public_key=IrohaCrypto.derive_public_key(extra_key))
34 ], creator_account=bob['id'])
35 IrohaCrypto.sign_transaction(tx, bob['key'])
36 return tx

can_add_signatory

Allows linking additional public keys to account.

The corresponding command can be executed only for an account of transaction creator and only if that account has a
role with the permission.

Related API method: Add Signatory

Example

Admin creates domain that contains only can_add_signatory permission and Alice account in that domain. Alice can
add to own account additional keys.

130 Chapter 9. Develop on Iroha

concepts_architecture/glossary.rst#concepts_architecture/glossary.rst
concepts_architecture/glossary.rst#concepts_architecture/glossary.rst
concepts_architecture/glossary.rst#concepts_architecture/glossary.rst
concepts_architecture/glossary.rst#concepts_architecture/glossary.rst
concepts_architecture/glossary.rst#concepts_architecture/glossary.rst
../api/commands.html#add-signatory


Iroha handbook: installation, getting started, API, guides, and troubleshooting, Release

1 admin = commons.new_user('admin@test')
2 alice = commons.new_user('alice@test')
3 iroha = Iroha(admin['id'])
4

5

6 @commons.hex
7 def genesis_tx():
8 test_permissions = [primitive_pb2.can_add_signatory]
9 genesis_commands = commons.genesis_block(admin, alice, test_permissions)

10 tx = iroha.transaction(genesis_commands)
11 IrohaCrypto.sign_transaction(tx, admin['key'])
12 return tx
13

14

15 @commons.hex
16 def add_signatory_tx():
17 extra_key = IrohaCrypto.private_key()
18 tx = iroha.transaction([
19 iroha.command('AddSignatory', account_id=alice['id'],
20 public_key=IrohaCrypto.derive_public_key(extra_key))
21 ], creator_account=alice['id'])
22 IrohaCrypto.sign_transaction(tx, alice['key'])
23 return tx

can_remove_my_signatory

Hint: This is a grantable permission.

Permission that allows a specified account remove public key from the another specified account.

See the example (to be done) for the usage details.

Related API method: Remove Signatory

Example

Admin creates domain that contains can_add_signatory and can_grant_can_remove_my_signatory permissions and
two accounts for Alice and Bob. Alice grants can_remove_my_signatory permission to Bob and adds additional key
to own account. Bob can remove one of Alice’s keys.

1 admin = commons.new_user('admin@test')
2 alice = commons.new_user('alice@test')
3 bob = commons.new_user('bob@test')
4 iroha = Iroha(admin['id'])
5

6

7 @commons.hex
8 def genesis_tx():

9.3. Iroha API reference 131

concepts_architecture/glossary.rst#concepts_architecture/glossary.rst
concepts_architecture/glossary.rst#concepts_architecture/glossary.rst
../api/commands.html#remove-signatory


Iroha handbook: installation, getting started, API, guides, and troubleshooting, Release

9 test_permissions = [
10 primitive_pb2.can_grant_can_remove_my_signatory,
11 primitive_pb2.can_add_signatory
12 ]
13 genesis_commands = commons.genesis_block(admin, alice, test_permissions)
14 genesis_commands.append(
15 iroha.command('CreateAccount', account_name='bob', domain_id='test',
16 public_key=IrohaCrypto.derive_public_key(bob['key']))
17 )
18 tx = iroha.transaction(genesis_commands)
19 IrohaCrypto.sign_transaction(tx, admin['key'])
20 return tx
21

22

23 @commons.hex
24 def grant_can_remove_my_signatory_tx():
25 extra_key = IrohaCrypto.private_key()
26 tx = iroha.transaction([
27 iroha.command('GrantPermission', account_id=bob['id'], permission=primitive_

→˓pb2.can_remove_my_signatory),
28 iroha.command('AddSignatory', account_id=alice['id'],
29 public_key=IrohaCrypto.derive_public_key(extra_key))
30 ], creator_account=alice['id'])
31 IrohaCrypto.sign_transaction(tx, alice['key'])
32 return tx
33

34

35 @commons.hex
36 def remove_signatory_tx():
37 tx = iroha.transaction([
38 iroha.command('RemoveSignatory', account_id=alice['id'],
39 public_key=IrohaCrypto.derive_public_key(alice['key']))
40 ], creator_account=bob['id'])
41 IrohaCrypto.sign_transaction(tx, bob['key'])
42 return tx

can_remove_signatory

Allows unlinking additional public keys from an account.

The corresponding command can be executed only for an account of transaction creator and only if that account has a
role with the permission.

Related API method: Remove Signatory

Example

Admin creates domain that contains can_remove_signatory permission and Alice account in that domain. Admin
adds an extra key to Alice account. Alice can remove one of the keys.

132 Chapter 9. Develop on Iroha

concepts_architecture/glossary.rst#concepts_architecture/glossary.rst
concepts_architecture/glossary.rst#concepts_architecture/glossary.rst
concepts_architecture/glossary.rst#concepts_architecture/glossary.rst
concepts_architecture/glossary.rst#concepts_architecture/glossary.rst
concepts_architecture/glossary.rst#concepts_architecture/glossary.rst
../api/commands.html#remove-signatory


Iroha handbook: installation, getting started, API, guides, and troubleshooting, Release

1 admin = commons.new_user('admin@test')
2 alice = commons.new_user('alice@test')
3 iroha = Iroha(admin['id'])
4

5

6 @commons.hex
7 def genesis_tx():
8 test_permissions = [primitive_pb2.can_remove_signatory]
9 extra_key = IrohaCrypto.private_key()

10 genesis_commands = commons.genesis_block(admin, alice, test_permissions)
11 genesis_commands.append(
12 iroha.command('AddSignatory', account_id=alice['id'],
13 public_key=IrohaCrypto.derive_public_key(extra_key))
14 )
15 tx = iroha.transaction(genesis_commands)
16 IrohaCrypto.sign_transaction(tx, admin['key'])
17 return tx
18

19

20 @commons.hex
21 def remove_signatory_tx():
22 tx = iroha.transaction([
23 iroha.command('RemoveSignatory', account_id=alice['id'],
24 public_key=IrohaCrypto.derive_public_key(alice['key']))
25 ], creator_account=alice['id'])
26 IrohaCrypto.sign_transaction(tx, alice['key'])
27 return tx

can_set_my_quorum

Hint: This is a grantable permission.

Permission that allows a specified account to set quorum for the another specified account.

Account should have greater or equal amount of keys than quorum.

Related API method: Set Account Quorum

Example

Admin creates domain that contains can_grant_can_set_my_quorum and can_add_signatory permissions and create
two accounts for Alice and Bob in that domain. Alice grants to Bob can_set_my_quorum permission and adds an
extra key to account. Bob can set quorum for Alice.

1 admin = commons.new_user('admin@test')
2 alice = commons.new_user('alice@test')
3 bob = commons.new_user('bob@test')
4 iroha = Iroha(admin['id'])

9.3. Iroha API reference 133

concepts_architecture/glossary.rst#concepts_architecture/glossary.rst
concepts_architecture/glossary.rst#concepts_architecture/glossary.rst
concepts_architecture/glossary.rst#concepts_architecture/glossary.rst
../api/commands.html#set-account-quorum


Iroha handbook: installation, getting started, API, guides, and troubleshooting, Release

5

6

7 @commons.hex
8 def genesis_tx():
9 test_permissions = [

10 primitive_pb2.can_grant_can_set_my_quorum,
11 primitive_pb2.can_add_signatory
12 ]
13 genesis_commands = commons.genesis_block(admin, alice, test_permissions)
14 genesis_commands.append(
15 iroha.command('CreateAccount', account_name='bob', domain_id='test',
16 public_key=IrohaCrypto.derive_public_key(bob['key']))
17 )
18 tx = iroha.transaction(genesis_commands)
19 IrohaCrypto.sign_transaction(tx, admin['key'])
20 return tx
21

22

23 @commons.hex
24 def grant_can_set_my_quorum_tx():
25 extra_key = IrohaCrypto.private_key()
26 tx = iroha.transaction([
27 iroha.command('GrantPermission', account_id=bob['id'], permission=primitive_

→˓pb2.can_set_my_quorum),
28 iroha.command('AddSignatory', account_id=alice['id'],
29 public_key=IrohaCrypto.derive_public_key(extra_key))
30 ], creator_account=alice['id'])
31 IrohaCrypto.sign_transaction(tx, alice['key'])
32 return tx
33

34

35 @commons.hex
36 def set_quorum_tx():
37 tx = iroha.transaction([
38 iroha.command('SetAccountQuorum', account_id=alice['id'], quorum=2)
39 ], creator_account=bob['id'])
40 IrohaCrypto.sign_transaction(tx, bob['key'])
41 return tx

can_set_quorum

Allows setting quorum.

At least the same number (or more) of public keys should be already linked to an account.

Related API method: Set Account Quorum

Example

Admin creates domain that contains only can_set_quorum permission and creates Alice account in that domain.
Admin adds an extra key for Alice account. Alice can set quorum equals two.

134 Chapter 9. Develop on Iroha

concepts_architecture/glossary.rst#concepts_architecture/glossary.rst
concepts_architecture/glossary.rst#concepts_architecture/glossary.rst
../api/commands.html#set-account-quorum


Iroha handbook: installation, getting started, API, guides, and troubleshooting, Release

1 admin = commons.new_user('admin@test')
2 alice = commons.new_user('alice@test')
3 iroha = Iroha(admin['id'])
4

5

6 @commons.hex
7 def genesis_tx():
8 test_permissions = [primitive_pb2.can_set_quorum]
9 extra_key = IrohaCrypto.private_key()

10 genesis_commands = commons.genesis_block(admin, alice, test_permissions)
11 genesis_commands.append(
12 iroha.command('AddSignatory', account_id=alice['id'],
13 public_key=IrohaCrypto.derive_public_key(extra_key))
14 )
15 tx = iroha.transaction(genesis_commands)
16 IrohaCrypto.sign_transaction(tx, admin['key'])
17 return tx
18

19

20 @commons.hex
21 def set_quorum_tx():
22 # Quourum cannot be greater than amount of keys linked to an account
23 tx = iroha.transaction([
24 iroha.command('SetAccountQuorum', account_id=alice['id'], quorum=2)
25 ], creator_account=alice['id'])
26 IrohaCrypto.sign_transaction(tx, alice['key'])
27 return tx

Engine

can_call_engine

Allows to use Burrow EMV to run Solidity smart-contracts

Related API method: Call Engine

Example

Admin creates domain that contains only can_call_engine permission and Alice account in that domain. Alice can
send Solidity smart contracts to Burrow EVM by using Call Engine command.

can_call_engine_on_my_behalf

Hint: This is a grantable permission.

Permission that allows a specified account to use Burrow EVM for the another specified account.

9.3. Iroha API reference 135

../api/commands.html#call-engine
concepts_architecture/glossary.rst#concepts_architecture/glossary.rst
concepts_architecture/glossary.rst#concepts_architecture/glossary.rst


Iroha handbook: installation, getting started, API, guides, and troubleshooting, Release

Related API method: Call Engine

Example

Admin creates domain that contains only can_grant_can_call_engine permission and two accounts for Alice and Bob
in that domain. Alice can grant to Bob and revoke can_call_engine_on_my_behalf permission.

Grant

can_grant_can_call_engine_on_my_behalf

Allows role owners grant can_call_engine_on_my_behalf permission.

Related API method: Call Engine

Example

Admin creates domain that contains only can_grant_can_call_engine permission and two accounts for Alice and Bob
in that domain. Alice can grant to Bob and revoke can_call_engine_on_my_behalf permission.

Query-related permissions

Account

can_get_all_acc_detail

Allows getting all the details set to any account within the system.

Related API method: Get Account Detail

Example

Admin creates Alice account in a different domain that has only can_get_all_acc_detail permission. Alice can access
details set to Admin account.

136 Chapter 9. Develop on Iroha

../api/commands.html#call-engine
concepts_architecture/glossary.rst#concepts_architecture/glossary.rst
concepts_architecture/glossary.rst#concepts_architecture/glossary.rst
../api/commands.html#call-engine
concepts_architecture/glossary.rst#concepts_architecture/glossary.rst
../api/queries.html#get-account-detail


Iroha handbook: installation, getting started, API, guides, and troubleshooting, Release

1 admin = commons.new_user('admin@first')
2 alice = commons.new_user('alice@second')
3 iroha = Iroha(admin['id'])
4

5

6 @commons.hex
7 def genesis_tx():
8 test_permissions = [primitive_pb2.can_get_all_acc_detail]
9 genesis_commands = commons.genesis_block(admin, alice, test_permissions,

→˓multidomain=True)
10 tx = iroha.transaction(genesis_commands)
11 IrohaCrypto.sign_transaction(tx, admin['key'])
12 return tx
13

14

15 @commons.hex
16 def account_detail_query():
17 query = iroha.query('GetAccountDetail', creator_account=alice['id'], account_

→˓id=admin['id'])
18 IrohaCrypto.sign_query(query, alice['key'])
19 return query

can_get_all_accounts

Allows getting account information: quorum and all the details related to the account.

With this permission, query creator can get information about any account within a system.

All the details (set by the account owner or owners of other accounts) will be returned.

Related API method: Get Account

Example

Admin creates Alice account in a different domain that has only can_get_all_accounts permission. Alice can access
account information of Admin.

1 admin = commons.new_user('admin@first')
2 alice = commons.new_user('alice@second')
3 iroha = Iroha(admin['id'])
4

5

6 @commons.hex
7 def genesis_tx():
8 test_permissions = [primitive_pb2.can_get_all_accounts]
9 genesis_commands = commons.genesis_block(admin, alice, test_permissions,

→˓multidomain=True)
10 tx = iroha.transaction(genesis_commands)
11 IrohaCrypto.sign_transaction(tx, admin['key'])
12 return tx

9.3. Iroha API reference 137

concepts_architecture/glossary.rst#concepts_architecture/glossary.rst
concepts_architecture/glossary.rst#concepts_architecture/glossary.rst
concepts_architecture/glossary.rst#concepts_architecture/glossary.rst
concepts_architecture/glossary.rst#concepts_architecture/glossary.rst
../api/queries.html#get-account


Iroha handbook: installation, getting started, API, guides, and troubleshooting, Release

13

14

15 @commons.hex
16 def account_query():
17 query = iroha.query('GetAccount', creator_account=alice['id'], account_id=admin[

→˓'id'])
18 IrohaCrypto.sign_query(query, alice['key'])
19 return query

can_get_domain_acc_detail

Allows getting all the details set to any account within the same domain as a domain of query creator account.

Related API method: Get Account Detail

Example

Admin creates Alice account in the same domain that has only can_get_domain_acc_detail permission. Alice can get
details set to Admin account.

1 admin = commons.new_user('admin@test')
2 alice = commons.new_user('alice@test')
3 iroha = Iroha(admin['id'])
4

5

6 @commons.hex
7 def genesis_tx():
8 test_permissions = [primitive_pb2.can_get_domain_acc_detail]
9 genesis_commands = commons.genesis_block(admin, alice, test_permissions)

10 tx = iroha.transaction(genesis_commands)
11 IrohaCrypto.sign_transaction(tx, admin['key'])
12 return tx
13

14

15 @commons.hex
16 def account_detail_query():
17 query = iroha.query('GetAccountDetail', creator_account=alice['id'], account_

→˓id=admin['id'])
18 IrohaCrypto.sign_query(query, alice['key'])
19 return query

can_get_domain_accounts

Allows getting account information: quorum and all the details related to the account.

With this permission, query creator can get information only about accounts from the same domain.

All the details (set by the account owner or owners of other accounts) will be returned.

138 Chapter 9. Develop on Iroha

concepts_architecture/glossary.rst#concepts_architecture/glossary.rst
concepts_architecture/glossary.rst#concepts_architecture/glossary.rst
concepts_architecture/glossary.rst#concepts_architecture/glossary.rst
../api/queries.html#get-account-detail
concepts_architecture/glossary.rst#concepts_architecture/glossary.rst
concepts_architecture/glossary.rst#concepts_architecture/glossary.rst
concepts_architecture/glossary.rst#concepts_architecture/glossary.rst
concepts_architecture/glossary.rst#concepts_architecture/glossary.rst
concepts_architecture/glossary.rst#concepts_architecture/glossary.rst


Iroha handbook: installation, getting started, API, guides, and troubleshooting, Release

Related API method: Get Account

Example

Admin creates Alice account in the same domain that has only can_get_domain_accounts. Alice can access account
information of Admin.

1 admin = commons.new_user('admin@test')
2 alice = commons.new_user('alice@test')
3 iroha = Iroha(admin['id'])
4

5

6 @commons.hex
7 def genesis_tx():
8 test_permissions = [primitive_pb2.can_get_domain_accounts]
9 genesis_commands = commons.genesis_block(admin, alice, test_permissions)

10 tx = iroha.transaction(genesis_commands)
11 IrohaCrypto.sign_transaction(tx, admin['key'])
12 return tx
13

14

15 @commons.hex
16 def account_query():
17 query = iroha.query('GetAccount', creator_account=alice['id'], account_id=admin[

→˓'id'])
18 IrohaCrypto.sign_query(query, alice['key'])
19 return query

can_get_my_acc_detail

Allows getting all the details set to the account of query creator.

Related API method: Get Account Detail

Example

Admin creates Alice account in the domain that has only can_get_my_acc_detail permission. Alice can get details set
to own account.

1 admin = commons.new_user('admin@test')
2 alice = commons.new_user('alice@test')
3 iroha = Iroha(admin['id'])
4

5

9.3. Iroha API reference 139

../api/queries.html#get-account
concepts_architecture/glossary.rst#concepts_architecture/glossary.rst
concepts_architecture/glossary.rst#concepts_architecture/glossary.rst
../api/queries.html#get-account-detail


Iroha handbook: installation, getting started, API, guides, and troubleshooting, Release

6 @commons.hex
7 def genesis_tx():
8 test_permissions = [primitive_pb2.can_get_my_acc_detail]
9 genesis_commands = commons.genesis_block(admin, alice, test_permissions)

10 tx = iroha.transaction(genesis_commands)
11 IrohaCrypto.sign_transaction(tx, admin['key'])
12 return tx
13

14

15 @commons.hex
16 def account_detail_query():
17 query = iroha.query('GetAccountDetail', creator_account=alice['id'], account_

→˓id=alice['id'])
18 IrohaCrypto.sign_query(query, alice['key'])
19 return query

can_get_my_account

Allows getting account information: quorum and all the details related to the account.

With this permission, query creator can get information only about own account.

All the details (set by the account owner or owners of other accounts) will be returned.

Related API method: Get Account

Example

Admin creates Alice account in the domain that has only can_get_my_account permission. Alice can access own
account information.

1 admin = commons.new_user('admin@test')
2 alice = commons.new_user('alice@test')
3 iroha = Iroha(admin['id'])
4

5

6 @commons.hex
7 def genesis_tx():
8 test_permissions = [primitive_pb2.can_get_my_account]
9 genesis_commands = commons.genesis_block(admin, alice, test_permissions)

10 tx = iroha.transaction(genesis_commands)
11 IrohaCrypto.sign_transaction(tx, admin['key'])
12 return tx
13

14

15 @commons.hex
16 def account_query():
17 query = iroha.query('GetAccount', creator_account=alice['id'], account_id=alice[

→˓'id'])

140 Chapter 9. Develop on Iroha

concepts_architecture/glossary.rst#concepts_architecture/glossary.rst
concepts_architecture/glossary.rst#concepts_architecture/glossary.rst
concepts_architecture/glossary.rst#concepts_architecture/glossary.rst
concepts_architecture/glossary.rst#concepts_architecture/glossary.rst
../api/queries.html#get-account


Iroha handbook: installation, getting started, API, guides, and troubleshooting, Release

18 IrohaCrypto.sign_query(query, alice['key'])
19 return query

Account Asset

can_get_all_acc_ast

Allows getting a balance of assets on any account within the system.

Query response will contain information about all the assets that ever been assigned to an account.

Related API method: Get Account Assets

Example

Admin creates Alice account in a different domain that has only can_get_all_acc_ast permission. Alice can access
assets balance on Admin account.

1 admin = commons.new_user('admin@first')
2 alice = commons.new_user('alice@second')
3 iroha = Iroha(admin['id'])
4

5

6 @commons.hex
7 def genesis_tx():
8 test_permissions = [primitive_pb2.can_get_all_acc_ast]
9 genesis_commands = commons.genesis_block(admin, alice, test_permissions,

→˓multidomain=True)
10 tx = iroha.transaction(genesis_commands)
11 IrohaCrypto.sign_transaction(tx, admin['key'])
12 return tx
13

14

15 @commons.hex
16 def account_assets_query():
17 query = iroha.query('GetAccountAssets', creator_account=alice['id'], account_

→˓id=admin['id'])
18 IrohaCrypto.sign_query(query, alice['key'])
19 return query

can_get_domain_acc_ast

Allows getting a balance of specified asset on any account within the same domain as a domain of query creator
account.

Query response will contain information about all the assets that ever been assigned to an account.

9.3. Iroha API reference 141

concepts_architecture/glossary.rst#concepts_architecture/glossary.rst
concepts_architecture/glossary.rst#concepts_architecture/glossary.rst
concepts_architecture/glossary.rst#concepts_architecture/glossary.rst
../api/queries.html#get-account-assets
concepts_architecture/glossary.rst#concepts_architecture/glossary.rst
concepts_architecture/glossary.rst#concepts_architecture/glossary.rst
concepts_architecture/glossary.rst#concepts_architecture/glossary.rst
concepts_architecture/glossary.rst#concepts_architecture/glossary.rst


Iroha handbook: installation, getting started, API, guides, and troubleshooting, Release

Related API method: Get Account Assets

Example

Admin creates Alice account in the same domain that has only can_get_domain_acc_ast permission. Alice can access
assets balance on Admin account.

1 admin = commons.new_user('admin@test')
2 alice = commons.new_user('alice@test')
3 iroha = Iroha(admin['id'])
4

5

6 @commons.hex
7 def genesis_tx():
8 test_permissions = [primitive_pb2.can_get_domain_acc_ast]
9 genesis_commands = commons.genesis_block(admin, alice, test_permissions)

10 tx = iroha.transaction(genesis_commands)
11 IrohaCrypto.sign_transaction(tx, admin['key'])
12 return tx
13

14

15 @commons.hex
16 def account_assets_query():
17 query = iroha.query('GetAccountAssets', account_id=admin['id'], creator_

→˓account=alice['id'])
18 IrohaCrypto.sign_query(query, alice['key'])
19 return query

can_get_my_acc_ast

Allows getting a balance of specified asset on account of query creator.

Query response will contain information about all the assets that ever been assigned to an account.

Related API method: Get Account Assets

Example

Admin creates Alice account in a domain that has only can_get_my_acc_ast permission. Alice can access assets
balance on own account.

1 admin = commons.new_user('admin@test')
2 alice = commons.new_user('alice@test')
3 iroha = Iroha(admin['id'])
4

142 Chapter 9. Develop on Iroha

../api/queries.html#get-account-assets
concepts_architecture/glossary.rst#concepts_architecture/glossary.rst
concepts_architecture/glossary.rst#concepts_architecture/glossary.rst
concepts_architecture/glossary.rst#concepts_architecture/glossary.rst
../api/queries.html#get-account-assets


Iroha handbook: installation, getting started, API, guides, and troubleshooting, Release

5

6 @commons.hex
7 def genesis_tx():
8 test_permissions = [primitive_pb2.can_get_my_acc_ast]
9 genesis_commands = commons.genesis_block(admin, alice, test_permissions)

10 tx = iroha.transaction(genesis_commands)
11 IrohaCrypto.sign_transaction(tx, admin['key'])
12 return tx
13

14

15 @commons.hex
16 def account_assets_query():
17 query = iroha.query('GetAccountAssets', creator_account=alice['id'], account_

→˓id=alice['id'])
18 IrohaCrypto.sign_query(query, alice['key'])
19 return query

Account Asset Transaction

can_get_all_acc_ast_txs

Allows getting transactions associated with a specified asset and any account within the system.

Note: Incoming asset transfers will also appear in the query response.

Related API method: Get Account Asset Transactions

Example

Admin creates Alice account in a different domain that has can_get_all_acc_ast_txs, can_receive and can_transfer
permissions. Admin issues some amount of coins and transfers them to Alice. Alice can query all transactions related
to coins and Admin account.

1 admin = commons.new_user('admin@first')
2 alice = commons.new_user('alice@second')
3 iroha = Iroha(admin['id'])
4

5

6 @commons.hex
7 def genesis_tx():
8 test_permissions = [
9 primitive_pb2.can_get_all_acc_ast_txs,

10 primitive_pb2.can_receive,
11 primitive_pb2.can_transfer
12 ]
13 genesis_commands = commons.genesis_block(admin, alice, test_permissions,

→˓multidomain=True)

9.3. Iroha API reference 143

concepts_architecture/glossary.rst#concepts_architecture/glossary.rst
concepts_architecture/glossary.rst#concepts_architecture/glossary.rst
concepts_architecture/glossary.rst#concepts_architecture/glossary.rst
../api/queries.html#get-account-asset-transactions


Iroha handbook: installation, getting started, API, guides, and troubleshooting, Release

14 genesis_commands.extend([
15 iroha.command('CreateAsset', asset_name='coin', domain_id='first',

→˓precision=2),
16 iroha.command('AddAssetQuantity', asset_id='coin#first', amount='300.00'),
17 iroha.command('TransferAsset',
18 src_account_id=admin['id'],
19 dest_account_id=alice['id'],
20 asset_id='coin#first',
21 description='top up',
22 amount='200.00')
23 ])
24 tx = iroha.transaction(genesis_commands)
25 IrohaCrypto.sign_transaction(tx, admin['key'])
26 return tx
27

28

29 @commons.hex
30 def account_asset_transactions_query():
31 query = iroha.query('GetAccountAssetTransactions', creator_account=alice['id'],

→˓page_size=10,
32 account_id=admin['id'], asset_id='coin#first')
33 IrohaCrypto.sign_query(query, alice['key'])
34 return query

can_get_domain_acc_ast_txs

Allows getting transactions associated with a specified asset and an account from the same domain as query creator.

Note: Incoming asset transfers will also appear in the query response.

Related API method: Get Account Asset Transactions

Example

Admin creates Alice in the same domain that has only can_get_domain_acc_ast_txs permission. Admin issues some
amount of coins and transfers them to Alice. Alice can query all transactions related to coins and Admin account.

1 admin = commons.new_user('admin@test')
2 alice = commons.new_user('alice@test')
3 iroha = Iroha(admin['id'])
4

5

6 @commons.hex
7 def genesis_tx():
8 test_permissions = [primitive_pb2.can_get_domain_acc_ast_txs]
9 genesis_commands = commons.genesis_block(admin, alice, test_permissions)

10 genesis_commands.extend([

144 Chapter 9. Develop on Iroha

concepts_architecture/glossary.rst#concepts_architecture/glossary.rst
concepts_architecture/glossary.rst#concepts_architecture/glossary.rst
concepts_architecture/glossary.rst#concepts_architecture/glossary.rst
concepts_architecture/glossary.rst#concepts_architecture/glossary.rst
concepts_architecture/glossary.rst#concepts_architecture/glossary.rst
../api/queries.html#get-account-asset-transactions


Iroha handbook: installation, getting started, API, guides, and troubleshooting, Release

11 iroha.command('CreateAsset', asset_name='coin', domain_id='test',
→˓precision=2),

12 iroha.command('AddAssetQuantity', asset_id='coin#test', amount='500.69'),
13 iroha.command('TransferAsset',
14 src_account_id=admin['id'],
15 dest_account_id=alice['id'],
16 asset_id='coin#test',
17 description='top up',
18 amount='10.00')
19 ])
20 tx = iroha.transaction(genesis_commands)
21 IrohaCrypto.sign_transaction(tx, admin['key'])
22 return tx
23

24

25 @commons.hex
26 def account_asset_transactions_query():
27 query = iroha.query('GetAccountAssetTransactions', account_id=admin['id'],
28 asset_id='coin#test', creator_account=alice['id'], page_

→˓size=10)
29 IrohaCrypto.sign_query(query, alice['key'])
30 return query

can_get_my_acc_ast_txs

Allows getting transactions associated with the account of query creator and specified asset.

Note: Incoming asset transfers will also appear in the query response.

Related API method: Get Account Asset Transactions

Example

Admin creates Alice account in a domain that has only can_get_my_acc_ast_txs permission. Admin issues some
amount of coins and transfers them to Alice. Alice can query all transactions related to coins and own account.

1 admin = commons.new_user('admin@test')
2 alice = commons.new_user('alice@test')
3 iroha = Iroha(admin['id'])
4

5

6 @commons.hex
7 def genesis_tx():
8 test_permissions = [primitive_pb2.can_get_my_acc_ast_txs]
9 genesis_commands = commons.genesis_block(admin, alice, test_permissions)

10 genesis_commands.extend([
11 iroha.command('CreateAsset', asset_name='coin', domain_id='test',

→˓precision=2),

9.3. Iroha API reference 145

concepts_architecture/glossary.rst#concepts_architecture/glossary.rst
concepts_architecture/glossary.rst#concepts_architecture/glossary.rst
concepts_architecture/glossary.rst#concepts_architecture/glossary.rst
concepts_architecture/glossary.rst#concepts_architecture/glossary.rst
../api/queries.html#get-account-asset-transactions


Iroha handbook: installation, getting started, API, guides, and troubleshooting, Release

12 iroha.command('AddAssetQuantity', asset_id='coin#test', amount='500.69'),
13 iroha.command('TransferAsset',
14 src_account_id=admin['id'],
15 dest_account_id=alice['id'],
16 asset_id='coin#test',
17 description='top up',
18 amount='10.00')
19 ])
20 tx = iroha.transaction(genesis_commands)
21 IrohaCrypto.sign_transaction(tx, admin['key'])
22 return tx
23

24

25 @commons.hex
26 def account_asset_transactions_query():
27 query = iroha.query('GetAccountAssetTransactions', creator_account=alice['id'],

→˓account_id=alice['id'],
28 asset_id='coin#test', page_size=10)
29 IrohaCrypto.sign_query(query, alice['key'])
30 return query

Account Transaction

can_get_all_acc_txs

Allows getting all transactions issued by any account within the system.

Note: Incoming asset transfer inside a transaction would NOT lead to an appearance of the transaction in the command
output.

Related API method: Get Account Transactions

Example

Admin creates Alice account in a different domain that has only can_get_all_acc_txs permission. Alice can request
all the transactions issues by Admin.

1 admin = commons.new_user('admin@first')
2 alice = commons.new_user('alice@second')
3 iroha = Iroha(admin['id'])
4

5

6 @commons.hex
7 def genesis_tx():
8 test_permissions = [primitive_pb2.can_get_all_acc_txs]
9 genesis_commands = commons.genesis_block(admin, alice, test_permissions,

→˓multidomain=True)

146 Chapter 9. Develop on Iroha

concepts_architecture/glossary.rst#concepts_architecture/glossary.rst
concepts_architecture/glossary.rst#concepts_architecture/glossary.rst
../api/queries.html#get-account-transactions


Iroha handbook: installation, getting started, API, guides, and troubleshooting, Release

10 tx = iroha.transaction(genesis_commands)
11 IrohaCrypto.sign_transaction(tx, admin['key'])
12 return tx
13

14

15 @commons.hex
16 def account_transactions_query():
17 query = iroha.query('GetAccountTransactions', creator_account=alice['id'],

→˓account_id=admin['id'], page_size=10)
18 IrohaCrypto.sign_query(query, alice['key'])
19 return query

can_get_domain_acc_txs

Allows getting all transactions issued by any account from the same domain as query creator.

Note: Incoming asset transfer inside a transaction would NOT lead to an appearance of the transaction in the command
output.

Related API method: Get Account Transactions

Example

Admin creates Alice account in the same domain that has only can_get_domain_acc_txs permission. Alice can
request all the transactions issued by Admin.

1 admin = commons.new_user('admin@test')
2 alice = commons.new_user('alice@test')
3 iroha = Iroha(admin['id'])
4

5

6 @commons.hex
7 def genesis_tx():
8 test_permissions = [primitive_pb2.can_get_domain_acc_txs]
9 genesis_commands = commons.genesis_block(admin, alice, test_permissions)

10 tx = iroha.transaction(genesis_commands)
11 IrohaCrypto.sign_transaction(tx, admin['key'])
12 return tx
13

14

15 @commons.hex
16 def account_transactions_query():
17 query = iroha.query('GetAccountTransactions', creator_account=alice['id'],

→˓account_id=admin['id'], page_size=10)
18 IrohaCrypto.sign_query(query, alice['key'])
19 return query

9.3. Iroha API reference 147

concepts_architecture/glossary.rst#concepts_architecture/glossary.rst
concepts_architecture/glossary.rst#concepts_architecture/glossary.rst
concepts_architecture/glossary.rst#concepts_architecture/glossary.rst
concepts_architecture/glossary.rst#concepts_architecture/glossary.rst
../api/queries.html#get-account-transactions


Iroha handbook: installation, getting started, API, guides, and troubleshooting, Release

can_get_my_acc_txs

Allows getting all transactions issued by an account of query creator.

Note: Incoming asset transfer inside a transaction would NOT lead to an appearance of the transaction in the command
output.

Related API method: Get Account Transactions

Example

Admin creates Alice account in a domain that has only can_get_my_acc_txs permission. Alice can get all
transactions issued by own account.

1 admin = commons.new_user('admin@test')
2 alice = commons.new_user('alice@test')
3 iroha = Iroha(admin['id'])
4

5

6 @commons.hex
7 def genesis_tx():
8 test_permissions = [primitive_pb2.can_get_my_acc_txs]
9 genesis_commands = commons.genesis_block(admin, alice, test_permissions)

10 tx = iroha.transaction(genesis_commands)
11 IrohaCrypto.sign_transaction(tx, admin['key'])
12 return tx
13

14

15 @commons.hex
16 def account_transactions_query():
17 query = iroha.query('GetAccountTransactions', creator_account=alice['id'],

→˓account_id=alice['id'], page_size=10)
18 IrohaCrypto.sign_query(query, alice['key'])
19 return query

Asset

can_read_assets

Allows getting information about asset precision.

Related API method: Get Asset Info

Example

148 Chapter 9. Develop on Iroha

concepts_architecture/glossary.rst#concepts_architecture/glossary.rst
concepts_architecture/glossary.rst#concepts_architecture/glossary.rst
concepts_architecture/glossary.rst#concepts_architecture/glossary.rst
../api/queries.html#get-account-transactions
concepts_architecture/glossary.rst#concepts_architecture/glossary.rst
../api/queries.html#get-asset-info


Iroha handbook: installation, getting started, API, guides, and troubleshooting, Release

Admin creates Alice account in a domain that has can_read_assets permissions. Alice can query information about
any asset.

1 admin = commons.new_user('admin@test')
2 alice = commons.new_user('alice@test')
3 iroha = Iroha(admin['id'])
4

5

6 @commons.hex
7 def genesis_tx():
8 test_permissions = [primitive_pb2.can_read_assets]
9 genesis_commands = commons.genesis_block(admin, alice, test_permissions)

10 genesis_commands.append(
11 iroha.command('CreateAsset', asset_name='coin', domain_id='test', precision=2)
12 )
13 tx = iroha.transaction(genesis_commands)
14 IrohaCrypto.sign_transaction(tx, admin['key'])
15 return tx
16

17

18 @commons.hex
19 def get_asset_query():
20 query = iroha.query('GetAssetInfo', asset_id='coin#test', creator_account=alice[

→˓'id'])
21 IrohaCrypto.sign_query(query, alice['key'])
22 return query

Block Stream

can_get_blocks

Allows reading blocks. Allows subscription to the stream of accepted blocks.

Related API methods: Get Block, Fetchcommits

Role

can_get_roles

Allows getting a list of roles within the system. Allows getting a list of permissions associated with a role.

Related API methods: Get Roles, Get Role Permissions

Example

9.3. Iroha API reference 149

concepts_architecture/glossary.rst#concepts_architecture/glossary.rst
../api/queries.html#get-block
../api/queries.html#fetchcommits
concepts_architecture/glossary.rst#concepts_architecture/glossary.rst
concepts_architecture/glossary.rst#concepts_architecture/glossary.rst
../api/queries.html#get-roles
../api/queries.html#get-role-permissions


Iroha handbook: installation, getting started, API, guides, and troubleshooting, Release

Admin creates Alice account in a domain that has can_get_roles permission. Alice can query list of all existing roles.
Alice can query list of permissions contained in any role.

1 admin = commons.new_user('admin@test')
2 alice = commons.new_user('alice@test')
3 iroha = Iroha(admin['id'])
4

5

6 @commons.hex
7 def genesis_tx():
8 test_permissions = [primitive_pb2.can_get_roles]
9 genesis_commands = commons.genesis_block(admin, alice, test_permissions)

10 tx = iroha.transaction(genesis_commands)
11 IrohaCrypto.sign_transaction(tx, admin['key'])
12 return tx
13

14

15 @commons.hex
16 def get_system_roles_query():
17 query = iroha.query('GetRoles', creator_account=alice['id'])
18 IrohaCrypto.sign_query(query, alice['key'])
19 return query
20

21

22 @commons.hex
23 def get_role_permissions_query():
24 query = iroha.query('GetRolePermissions', creator_account=alice['id'], counter=2,

→˓role_id='admin_role')
25 IrohaCrypto.sign_query(query, alice['key'])
26 return query

Signatory

can_get_all_signatories

Allows getting a list of public keys linked to an account within the system.

Related API method: Get Signatories

Example

Admin creates Alice account in a different domain that has only can_get_all_signatories permission. Alice can query
a list of public keys related to Admin account.

1 admin = commons.new_user('admin@first')
2 alice = commons.new_user('alice@second')

150 Chapter 9. Develop on Iroha

concepts_architecture/glossary.rst#concepts_architecture/glossary.rst
../api/queries.html#get-signatories


Iroha handbook: installation, getting started, API, guides, and troubleshooting, Release

3 iroha = Iroha(admin['id'])
4

5

6 @commons.hex
7 def genesis_tx():
8 test_permissions = [primitive_pb2.can_get_all_signatories]
9 genesis_commands = commons.genesis_block(admin, alice, test_permissions,

→˓multidomain=True)
10 tx = iroha.transaction(genesis_commands)
11 IrohaCrypto.sign_transaction(tx, admin['key'])
12 return tx
13

14

15 @commons.hex
16 def signatories_query():
17 query = iroha.query('GetSignatories', creator_account=alice['id'], account_

→˓id=admin['id'])
18 IrohaCrypto.sign_query(query, alice['key'])
19 return query

can_get_domain_signatories

Allows getting a list of public keys of any account within the same domain as the domain of query creator account.

Related API method: Get Signatories

Example

Admin creates Alice account in the same domain that has only can_get_domain_signatories permission. Alice can
query a list of public keys related to Admin account.

1 admin = commons.new_user('admin@test')
2 alice = commons.new_user('alice@test')
3 iroha = Iroha(admin['id'])
4

5

6 @commons.hex
7 def genesis_tx():
8 test_permissions = [primitive_pb2.can_get_domain_signatories]
9 genesis_commands = commons.genesis_block(admin, alice, test_permissions)

10 tx = iroha.transaction(genesis_commands)
11 IrohaCrypto.sign_transaction(tx, admin['key'])
12 return tx
13

14

15 @commons.hex
16 def signatories_query():
17 query = iroha.query('GetSignatories', creator_account=alice['id'], account_

→˓id=admin['id'])

9.3. Iroha API reference 151

concepts_architecture/glossary.rst#concepts_architecture/glossary.rst
concepts_architecture/glossary.rst#concepts_architecture/glossary.rst
concepts_architecture/glossary.rst#concepts_architecture/glossary.rst
../api/queries.html#get-signatories


Iroha handbook: installation, getting started, API, guides, and troubleshooting, Release

18 IrohaCrypto.sign_query(query, alice['key'])
19 return query

can_get_my_signatories

Allows getting a list of public keys of query creator account.

Related API method: Get Signatories

Example

Admin creates Alice account in a domain that has only can_get_my_signatories permission. Alice can query a list of
public keys related to own account.

1 admin = commons.new_user('admin@test')
2 alice = commons.new_user('alice@test')
3 iroha = Iroha(admin['id'])
4

5

6 @commons.hex
7 def genesis_tx():
8 test_permissions = [primitive_pb2.can_get_my_signatories]
9 genesis_commands = commons.genesis_block(admin, alice, test_permissions)

10 tx = iroha.transaction(genesis_commands)
11 IrohaCrypto.sign_transaction(tx, admin['key'])
12 return tx
13

14

15 @commons.hex
16 def signatories_query():
17 query = iroha.query('GetSignatories', creator_account=alice['id'], account_

→˓id=alice['id'])
18 IrohaCrypto.sign_query(query, alice['key'])
19 return query

Transaction

can_get_all_txs

Allows getting any transaction by hash.

Related API method: Get Transactions

Example

152 Chapter 9. Develop on Iroha

concepts_architecture/glossary.rst#concepts_architecture/glossary.rst
concepts_architecture/glossary.rst#concepts_architecture/glossary.rst
../api/queries.html#get-signatories
concepts_architecture/glossary.rst#concepts_architecture/glossary.rst
../api/queries.html#get-transactions


Iroha handbook: installation, getting started, API, guides, and troubleshooting, Release

Admin issues several transactions and creates Alice account in a different domain that has only can_get_all_txs
permission. Alice (knowing transactions hashes) can query transactions issued by Admin Account.

1 admin = commons.new_user('admin@first')
2 alice = commons.new_user('alice@second')
3 iroha = Iroha(admin['id'])
4

5 admin_tx1_hash = None
6 admin_tx2_hash = None
7

8

9 @commons.hex
10 def genesis_tx():
11 test_permissions = [primitive_pb2.can_get_all_txs]
12 genesis_commands = commons.genesis_block(admin, alice, test_permissions,

→˓multidomain=True)
13 tx = iroha.transaction(genesis_commands)
14 IrohaCrypto.sign_transaction(tx, admin['key'])
15 return tx
16

17

18 @commons.hex
19 def admin_action_1_tx():
20 global admin_tx1_hash
21 tx = iroha.transaction([
22 iroha.command('CreateAsset', asset_name='coin', domain_id='second',

→˓precision=2)
23 ])
24 admin_tx1_hash = IrohaCrypto.hash(tx)
25 IrohaCrypto.sign_transaction(tx, admin['key'])
26 return tx
27

28

29 @commons.hex
30 def admin_action_2_tx():
31 global admin_tx2_hash
32 tx = iroha.transaction([
33 iroha.command('SetAccountDetail', account_id=admin['id'], key='hyperledger',

→˓value='iroha')
34 ])
35 admin_tx2_hash = IrohaCrypto.hash(tx)
36 IrohaCrypto.sign_transaction(tx, admin['key'])
37 return tx
38

39

40 @commons.hex
41 def transactions_query():
42 hashes = [
43 binascii.hexlify(admin_tx1_hash),
44 binascii.hexlify(admin_tx2_hash)
45 ]
46 query = iroha.query('GetTransactions', tx_hashes=hashes, creator_account=alice['id

→˓'])
47 IrohaCrypto.sign_query(query, alice['key'])
48 return query

9.3. Iroha API reference 153



Iroha handbook: installation, getting started, API, guides, and troubleshooting, Release

can_get_my_txs

Allows getting transaction (that was issued by query creator) by hash.

Related API method: Get Transactions

Example

Admin creates Alice account in a different domain. Alice (knowing transactions hashes) issues several transactions.
Alice can query own transactions.

1 admin = commons.new_user('admin@first')
2 alice = commons.new_user('alice@second')
3 iroha = Iroha(admin['id'])
4

5 alice_tx1_hash = None
6 alice_tx2_hash = None
7

8

9 @commons.hex
10 def genesis_tx():
11 test_permissions = [
12 primitive_pb2.can_get_my_txs,
13 primitive_pb2.can_add_asset_qty,
14 primitive_pb2.can_create_asset
15 ]
16 genesis_commands = commons.genesis_block(admin, alice, test_permissions,

→˓multidomain=True)
17 tx = iroha.transaction(genesis_commands)
18 IrohaCrypto.sign_transaction(tx, admin['key'])
19 return tx
20

21

22 @commons.hex
23 def alice_action_1_tx():
24 global alice_tx1_hash
25 tx = iroha.transaction([
26 iroha.command('CreateAsset', asset_name='coin', domain_id='first',

→˓precision=2)
27 ], creator_account=alice['id'])
28 alice_tx1_hash = IrohaCrypto.hash(tx)
29 IrohaCrypto.sign_transaction(tx, alice['key'])
30 return tx
31

32

33 @commons.hex
34 def alice_action_2_tx():
35 global alice_tx2_hash
36 tx = iroha.transaction([
37 iroha.command('AddAssetQuantity', asset_id='coin#first', amount='600.30')
38 ], creator_account=alice['id'])

154 Chapter 9. Develop on Iroha

concepts_architecture/glossary.rst#concepts_architecture/glossary.rst
concepts_architecture/glossary.rst#concepts_architecture/glossary.rst
../api/queries.html#get-transactions


Iroha handbook: installation, getting started, API, guides, and troubleshooting, Release

39 alice_tx2_hash = IrohaCrypto.hash(tx)
40 IrohaCrypto.sign_transaction(tx, alice['key'])
41 return tx
42

43

44 @commons.hex
45 def transactions_query():
46 hashes = [
47 binascii.hexlify(alice_tx1_hash),
48 binascii.hexlify(alice_tx2_hash)
49 ]
50 query = iroha.query('GetTransactions', creator_account=alice['id'], tx_

→˓hashes=hashes)
51 IrohaCrypto.sign_query(query, alice['key'])
52 return query

Peer

can_get_peers

Allows to request the list of peers in the Iroha network.

Related API method: Get Peers

Example

Admin creates Alice account in any domain that has can_get_peers. Alice can now request the list of peers in the
system.

1 admin = commons.new_user('admin@test')
2 alice = commons.new_user('alice@test')
3 iroha = Iroha(admin['id'])
4

5

6 @commons.hex
7 def genesis_tx():
8 test_permissions = [primitive_pb2.can_get_peers]
9 genesis_commands = commons.genesis_block(admin, alice, test_permissions)

10 tx = iroha.transaction(genesis_commands)
11 IrohaCrypto.sign_transaction(tx, admin['key'])
12 return tx
13

14

15 @commons.hex
16 def get_system_peers_query():
17 query = iroha.query('GetPeers', creator_account=alice['id'])
18 IrohaCrypto.sign_query(query, alice['key'])
19 return query

9.3. Iroha API reference 155

concepts_architecture/glossary.rst#concepts_architecture/glossary.rst
../api/queries.html#get-peers


Iroha handbook: installation, getting started, API, guides, and troubleshooting, Release

Engine receipts

can_get_my_engine_receipts

Allows getting Engine Receipts (result from EVM) on account of query creator.

Related API method: Engine Receipts

Example

Admin creates Alice account in a domain that has only can_get_my_engine_receipts permission. Alice can get all
transactions issued by own account.

can_get_domain_engine_receipts

Allows getting Engine Receipts (results from EVM) associated with a specified transaction from the same domain as
query creator.

Related API method: Engine Receipts

Example

Admin creates Alice account in the same domain that has only can_get_domain_engine_receipts permission. Alice
can request all the transactions issued by Admin.

can_get_all_engine_receipts

Allows getting all Engine Receipts (results from EVM) issued by any account within the system.

Related API method: Engine Receipts

Example

Admin creates Alice account in a different domain that has only can_get_all_engine_receipts permission. Alice can
request all the transactions issues by Admin.

156 Chapter 9. Develop on Iroha

concepts_architecture/glossary.rst#concepts_architecture/glossary.rst
concepts_architecture/glossary.rst#concepts_architecture/glossary.rst
../api/queries.html#engine-receipts
concepts_architecture/glossary.rst#concepts_architecture/glossary.rst
concepts_architecture/glossary.rst#concepts_architecture/glossary.rst
concepts_architecture/glossary.rst#concepts_architecture/glossary.rst
../api/queries.html#engine-receipts
concepts_architecture/glossary.rst#concepts_architecture/glossary.rst
../api/queries.html#engine-receipts


Iroha handbook: installation, getting started, API, guides, and troubleshooting, Release

Supplementary Sources

Listing 9.1: commons.py

1 #
2 # Copyright Soramitsu Co., Ltd. All Rights Reserved.
3 # SPDX-License-Identifier: Apache-2.0
4 #
5

6 from iroha import primitive_pb2
7 from iroha import Iroha, IrohaCrypto
8 import binascii
9 from time import time

10

11 command = Iroha.command
12

13

14 def now():
15 return int(time() * 1000)
16

17

18 def all_permissions():
19 return [
20 primitive_pb2.can_append_role,
21 primitive_pb2.can_create_role,
22 primitive_pb2.can_detach_role,
23 primitive_pb2.can_add_asset_qty,
24 primitive_pb2.can_subtract_asset_qty,
25 primitive_pb2.can_add_peer,
26 primitive_pb2.can_add_signatory,
27 primitive_pb2.can_remove_signatory,
28 primitive_pb2.can_set_quorum,
29 primitive_pb2.can_create_account,
30 primitive_pb2.can_set_detail,
31 primitive_pb2.can_create_asset,
32 primitive_pb2.can_transfer,
33 primitive_pb2.can_receive,
34 primitive_pb2.can_create_domain,
35 primitive_pb2.can_read_assets,
36 primitive_pb2.can_get_roles,
37 primitive_pb2.can_get_my_account,
38 primitive_pb2.can_get_all_accounts,
39 primitive_pb2.can_get_domain_accounts,
40 primitive_pb2.can_get_my_signatories,
41 primitive_pb2.can_get_all_signatories,
42 primitive_pb2.can_get_domain_signatories,
43 primitive_pb2.can_get_my_acc_ast,
44 primitive_pb2.can_get_all_acc_ast,
45 primitive_pb2.can_get_domain_acc_ast,
46 primitive_pb2.can_get_my_acc_detail,
47 primitive_pb2.can_get_all_acc_detail,
48 primitive_pb2.can_get_domain_acc_detail,
49 primitive_pb2.can_get_my_acc_txs,
50 primitive_pb2.can_get_all_acc_txs,
51 primitive_pb2.can_get_domain_acc_txs,
52 primitive_pb2.can_get_my_acc_ast_txs,
53 primitive_pb2.can_get_all_acc_ast_txs,
54 primitive_pb2.can_get_domain_acc_ast_txs,

9.3. Iroha API reference 157



Iroha handbook: installation, getting started, API, guides, and troubleshooting, Release

55 primitive_pb2.can_get_my_txs,
56 primitive_pb2.can_get_all_txs,
57 primitive_pb2.can_get_blocks,
58 primitive_pb2.can_grant_can_set_my_quorum,
59 primitive_pb2.can_grant_can_add_my_signatory,
60 primitive_pb2.can_grant_can_remove_my_signatory,
61 primitive_pb2.can_grant_can_transfer_my_assets,
62 primitive_pb2.can_grant_can_set_my_account_detail
63 ]
64

65

66 def genesis_block(admin, alice, test_permissions, multidomain=False):
67 """
68 Compose a set of common for all tests' genesis block transactions
69 :param admin: dict of id and private key of admin
70 :param alice: dict of id and private key of alice
71 :param test_permissions: permissions for users in test domain
72 :param multidomain: admin and alice accounts will be created in
73 different domains and the first domain users will have admin right
74 by default if True
75 :return: a list of Iroha.command's
76 """
77 peer = primitive_pb2.Peer()
78 peer.address = '0.0.0.0:50541'
79 peer.peer_key = IrohaCrypto.derive_public_key(admin['key'])
80 commands = [
81 command('AddPeer', peer=peer),
82 command('CreateRole', role_name='admin_role', permissions=all_permissions()),
83 command('CreateRole', role_name='test_role', permissions=test_permissions)]
84 if multidomain:
85 commands.append(command('CreateDomain', domain_id='first', default_role=

→˓'admin_role'))
86 commands.extend([
87 command('CreateDomain',
88 domain_id='second' if multidomain else 'test',
89 default_role='test_role'),
90 command('CreateAccount',
91 account_name='admin',
92 domain_id='first' if multidomain else 'test',
93 public_key=IrohaCrypto.derive_public_key(admin['key'])),
94 command('CreateAccount',
95 account_name='alice',
96 domain_id='second' if multidomain else 'test',
97 public_key=IrohaCrypto.derive_public_key(alice['key']))
98 ])
99 if not multidomain:

100 commands.append(command('AppendRole', account_id=admin['id'], role_name=
→˓'admin_role'))

101 return commands
102

103

104 def new_user(user_id):
105 private_key = IrohaCrypto.private_key()
106 if user_id.lower().startswith('admin'):
107 print('K{}'.format(private_key.decode('utf-8')))
108 return {
109 'id': user_id,
110 'key': private_key

158 Chapter 9. Develop on Iroha



Iroha handbook: installation, getting started, API, guides, and troubleshooting, Release

111 }
112

113

114 def hex(generator):
115 """
116 Decorator for transactions' and queries generators.
117

118 Allows preserving the type of binaries for Binary Testing Framework.
119 """
120 prefix = 'T' if generator.__name__.lower().endswith('tx') else 'Q'
121 print('{}{}'.format(prefix, binascii.hexlify(generator().SerializeToString()).

→˓decode('utf-8')))

Commands here are parts of transaction - a state-changing set of actions in the system. When a transaction passes
validation and consensus stages, it is written in a block and saved in immutable block store (blockchain).

Transactions consist of commands, performing an action over an entity in the system. The entity might be an account,
asset, etc.

9.4 Use Case Scenarios

We list a number of use cases and specific advantages that Hyperledger Iroha can introduce to these applications. We
hope that the applications and use cases will inspire developers and creators to further innovation with Hyperledger
Iroha.

9.4.1 Certificates in Education, Healthcare

Hyperledger Iroha incorporates into the system multiple certifying authorities such as universities, schools, and med-
ical institutions. Flexible permission model used in Hyperledger Iroha allows building certifying identities, and grant
certificates. The storage of explicit and implicit information in users’ account allows building various reputation and
identity systems.

By using Hyperledger Iroha each education or medical certificate can be verified that it was issued by certain certifying
authorities. Immutability and clear validation rules provide transparency to health and education significantly reducing
the usage of fake certificates.

Example

Imagine a medical institution registered as a hospital domain in Hyperledger Iroha. This domain has certified and
registered workers each having some role, e.g. physician, therapist, nurse. Each patient of the hospital has
an account with full medical history. Each medical record, like blood test results, is securely and privately stored in the
account of the patient as JSON key/values. Rules in hospital domain are defined such that only certified medical
workers and the user can access the personal information. The medical data returned by a query is verified that it
comes from a trusted source.

Hospital is tied to a specific location, following legal rules of that location, like storing personal data of citizens
only in specific regions(privacy rules). A multi-domain approach in Hyperledger Iroha allows sharing information
across multiple countries not violating legal rules. For example, if the user makoto@hospital decides to share
personal case history with a medical institution in another country, the user can use grant command with permission
can_get_my_acc_detail.

Similar to a medical institution, a registered university in Hyperledger Iroha has permissions to push information to
the graduated students. A diploma or certificate is essentially Proof-of-Graduation with a signature of recognized

9.4. Use Case Scenarios 159

../concepts_architecture/glossary.html#transaction
../concepts_architecture/glossary.html#block
../concepts_architecture/er_model.html
https://privacypolicies.com/blog/privacy-law-by-country/


Iroha handbook: installation, getting started, API, guides, and troubleshooting, Release

University. This approach helps to ease hiring process, with an employer making a query to Hyperledger Iroha to get
the acquired skills and competence of the potential employee.

9.4.2 Cross-Border Asset Transfers

Hyperledger Iroha provides fast and clear trade and settlement rules using multi-signature accounts and atomic ex-
change. Asset management is easy as in centralized systems while providing necessary security guarantees. By
simplifying the rules and commands required to create and transfer assets, we lower the barrier to entry, while at the
same time maintaining high-security guarantees.

Example

For example1, a user might want to transfer the ownership of a car. User haruto has registered owner-asset rela-
tionship with a car of sora brand with parameters: {"id": "34322069732074686520616E73776572",
"color": "red", "size": "small"}. This ownership is fixed in an underlying database of the system
with copies at each validating peer. To perform the transfer operation user haruto creates an offer, i.e. a multi-
signature transaction with two commands: transfer to user haru the car identifier and transfer some amount
of usd tokens from haru to haruto. Upon receiving the offer haru accepts it by signing the multi-signature
transaction, in this case, transaction atomically commits to the system.

Hypeledger Iroha has no built-in token, but it supports different assets from various creators. This approach allows
building a decentralized exchange market. For example, the system can have central banks from different countries to
issue assets.

9.4.3 Financial Applications

Hyperleger Iroha can be very useful in the auditing process. Each information is validated by business rules and is
constantly maintained by distinct network participants. Access control rules along with some encryption maintain
desired level of privacy. Access control rules can be defined at different levels: user-level, domain-level or system-
level. At the user-level privacy rules for a specific individual are defined. If access rules are determined at domain or
system level, they are affecting all users in the domain. In Hyperledger Iroha we provide convenient role-based access
control rules, where each role has specific permissions.

Transactions can be traced with a local database. Using Iroha-API auditor can query and perform analytics on the data,
execute specific audit software. Hyperledger Iroha supports different scenarios for deploying analytics software: on
a local computer, or execute code on specific middleware. This approach allows analyzing Big Data application with
Hadoop, Apache, and others. Hypeledger Iroha serves as a guarantor of data integrity and privacy (due to the query
permissions restriction).

Example

For example, auditing can be helpful in financial applications. An auditor account has a role of the auditor with
permissions to access the information of users in the domain without bothering the user. To reduce the probability of
account hijacking and prevent the auditor from sending malicious queries, the auditor is typically defined as a multi-
signature account, meaning that auditor can make queries only having signatures from multiple separate identities.
The auditor can make queries not only to fetch account data and balance but also all transactions of a user, e.g. all
transfers of user haruto in domain konoha. To efficiently analyze data of million users each Iroha node can work
in tandem with analytics software.

Multi-signature transactions are a powerful tool of Hyperledger Iroha that can disrupt tax system. Each transaction
in a certain domain can be as a multi-signature transaction, where one signature comes from the user (for example

1 Currently not implemented

160 Chapter 9. Develop on Iroha



Iroha handbook: installation, getting started, API, guides, and troubleshooting, Release

asset transfer) and the second signature comes from special taxing nodes. Taxing nodes will have special validation
rules written using Iroha-API, e.g. each purchase in the certified stores must pay taxes. In other words, Iroha a
valid purchase transaction must contain two commands: money transfer(purchase) to the store and money transfer(tax
payment) to the government.

9.4.4 Identity Management

Hyperledger Iroha has an intrinsic support for identity management. Each user in the system has a uniquely identified
account with personal information, and each transaction is signed and associated with a certain user. This makes
Hyperledger Iroha perfect for various application with KYC (Know Your Customer) features.

Example

For example, insurance companies can benefit from querying the information of user’s transaction without worrying
about the information truthfulness. Users can also benefit from storing personal information on a blockchain since
authenticated information will reduce the time of claims processing. Imagine a situation where a user wants to make a
hard money loan. Currently, pre-qualification is a tedious process of gathering information about income, debts and in-
formation verification. Each user in Hyperledger Iroha has an account with verified personal information, such as own-
ing assets, job positions, and debts. User income and debts can be traced using query GetAccountTransactions,
owning assets using query GetAccountAssets and job positions using GetAccountDetail. Each query re-
turns verified result reducing the processing time of hard money loan will take only a few seconds. To incentivize
users to share personal information, various companies can come up with business processes. For example, insur-
ance companies can create bonus discounts for users making fitness activities. Fitness applications can push private
Proof-of-Activity to the system, and the user can decide later to share information with insurance companies using
GrantPermission with permission can_get_my_acc_detail.

9.4.5 Supply Chain

Governance of a decentralized system and representing legal rules as a system’s code is an essential combination of
any supply chain system. Certification system used in Hyperledger Iroha allows tokenization of physical items and
embedding them into the system. Each item comes with the information about “what, when, where and why”.

Permission systems and restricted set of secure core commands narrows the attack vector and provides effortlessly a
basic level of privacy. Each transaction is traceable within a system with a hash value, by the credentials or certificates
of the creator.

Example

Food supply chain is a shared system with multiple different actors, such as farmers, storehouses, grocery stores, and
customers. The goal is to deliver food from a farmer’s field to the table of a customer. The product goes through many
stages, with each stage recorded in shared space. A customer scans a code of the product via a mobile device, in which
an Iroha query is encoded. Iroha query provides a full history with all stages, information about the product and the
farmer.

For example, gangreen is a registered farmer tomato asset creator, he serves as a guarantor tokenizing physical
items, i.e. associating each tomato with an Iroha tomato item. Asset creation and distribution processes are totally
transparent for network participants. Iroha tomato goes on a journey through a multitude of vendors to finally come
to user chad.

We simplified asset creation to just a single command CreateAsset without the need to create complex smart
contracts. One the major advantages of Hyperledger Iroha is in its ease, that allows developers to focus on the provided
value of their applications.

9.4. Use Case Scenarios 161



Iroha handbook: installation, getting started, API, guides, and troubleshooting, Release

9.4.6 Fund Management

With the support of multisignature transactions it is possible to maintain a fund by many managers. In that scheme
investment can only be made after the confirmation of the quorum participants.

Example

The fund assets should be held at one account. Its signatories should be fund managers, who are dealing with invest-
ments and portfolio distributions. That can be added via AddSignatory command. All of the assets should be held
within one account, which signatories represent the fund managers. Thus the concrete exchanges can be performed
with the multisignature transaction so that everyone will decide on a particular financial decision. The one may confirm
a deal by sending the original transaction and one of managers’ signature. Iroha will maintain the transaction sending
so that the deal will not be completed until it receives the required number of confirmation, which is parametrized with
the transaction quorum parameter.

9.4.7 Related Research

(The idea was to show current pioneers of blockchain applications and their works.)

162 Chapter 9. Develop on Iroha



CHAPTER 10

Join the Community

Table of Contents

• Join the Community

– How Can I Contribute?

* Reporting Bugs

* Reporting Vulnerabilities

* Suggesting Improvements

* Asking Questions

* Your First Code Contribution

* Pull Requests

– Styleguides

* Git Style Guide

* C++ Style Guide

* Documentation Styleguide

– Places where community is active

First off, thanks for taking the time to contribute!

The following is a short set of guidelines for contributing to Iroha.

163



Iroha handbook: installation, getting started, API, guides, and troubleshooting, Release

10.1 How Can I Contribute?

10.1.1 Reporting Bugs

Bug is an error, design flaw, failure or fault in Iroha that causes it to produce an incorrect or unexpected result, or to
behave in unintended ways.

Bugs are tracked as JIRA issues in Hyperledger Jira.

To submit a bug, create new issue and include these details:

Field What to enter
Project Iroha (IR)
Issue Type Bug
Summary Essence of the problem
Description What the issue is about; if you have any logs, please provide them
Priority You can use Medium though if you see the issue as a high priority, please choose that
Environment Your OS, device’s specs, Virtual Environment if you use one, version of Iroha etc.

10.1.2 Reporting Vulnerabilities

While we try to be proactive in preventing security problems, we do not assume they?ll never come up.

It is standard practice to responsibly and privately disclose to the vendor (Hyperledger organization) a security problem
before publicizing, so a fix can be prepared, and damage from the vulnerability minimized.

Before the First Major Release (1.0) all vulnerabilities are considered to be bugs, so feel free to submit them as de-
scribed above. After the First Major Release please utilize a bug bounty program here in order to submit vulnerabilities
and get your reward.

In any case ? feel free to reach to any of existing maintainers in Rocket.Chat private messages or in an e-mail (check
CONTRIBUTORS.md file) if you want to discuss whether your discovery is a vulnerability or a bug.

10.1.3 Suggesting Improvements

An improvement is a code or idea, which makes existing code or design faster, more stable, portable, secure or better
in any other way.

Improvements are tracked as JIRA improvements. To submit new improvement, create new issue and include these
details:

Field What to enter
Project Iroha (IR)
Issue Type Improvement
Summary Essence of the idea
Description What the idea is about; if you have any code suggestions, you are welcome to add them here
Priority You can use Medium
Assign You can assign the task to yourself if you are planning on working on it

164 Chapter 10. Join the Community

https://jira.hyperledger.org/projects/IR/issues/IR-275?filter=allopenissues&orderby=issuetype+ASC%2C+priority+DESC%2C+updated+DESC
https://jira.hyperledger.org/secure/CreateIssue.jspa
https://hackerone.com/hyperledger
https://jira.hyperledger.org/browse/IR-184?jql=project%20%3D%20IR%20and%20issuetype%20%3D%20Improvement%20ORDER%20BY%20updated%20DESC
https://jira.hyperledger.org/secure/CreateIssue.jspa


Iroha handbook: installation, getting started, API, guides, and troubleshooting, Release

10.1.4 Asking Questions

A question is any discussion that is typically neigher a bug, nor feature request or improvement. If you have a question
like “How do I do X?” - this paragraph is for you.

Please post your question in your favourite messenger so members of the community could help you. You can also
help others!

10.1.5 Your First Code Contribution

Read our C++ Style Guide and start with beginner-friendly issues with JIRA label good-first-issue. Indicate somehow
that you are working on this task: get in touch with maintainers team, community or simply assign this issue to
yourself.

10.1.6 Pull Requests

• Fill in the required template

• End all files with a newline

• Write tests for new code. Test coverage for new code must be at least 70%

• Every pull request should be reviewed and get at least two approvals from maintainers team. Check who is
a current maintainer in MAINTAINERS.md file

• When you’ve finished work make sure that you’ve got all passing CI checks ? after that squash and merge your
pull request

• Follow the C++ Style Guide

• Follow the Git Style Guide

• Document new code based on the Documentation Styleguide

• When working with PRs from forks check this manual

10.2 Styleguides

10.2.1 Git Style Guide

• Sign-off every commit with DCO: Signed-off-by: $NAME <$EMAIL>. You can do it automatically
using git commit -s

• Use present tense (“Add feature”, not “Added feature”).

• Use imperative mood (“Deploy docker to. . . ” not “Deploys docker to. . . ”).

• Write meaningful commit message.

• Limit the first line of commit message to 50 characters or less

• First line of commit message must contain summary of work done, second line must contain empty line, third
and other lines can contain list of commit changes

10.2. Styleguides 165

https://jira.hyperledger.org/issues/?jql=project%20%3D%20IR%20and%20labels%20%3D%20good-first-issue%20ORDER%20BY%20updated%20DESC
https://github.com/hyperledger/iroha/blob/master/.github/PULL_REQUEST_TEMPLATE.md
https://github.com/hyperledger/iroha/blob/master/MAINTAINERS.md
https://help.github.com/articles/checking-out-pull-requests-locally
https://github.com/apps/dco


Iroha handbook: installation, getting started, API, guides, and troubleshooting, Release

10.2.2 C++ Style Guide

• Use clang-format settings file. There are guides available on the internet (e.g. Kratos wiki)

• Follow CppCoreGuidelines and Cpp Best Practices.

• Avoid platform-dependent code.

• Use C++17.

• Use camelCase for class names and methods, use snake_case for variables.

10.2.3 Documentation Styleguide

• Use Doxygen.

• Document all public API: methods, functions, members, templates, classes. . .

10.3 Places where community is active

Our community members are active at:

Service Link
RocketChat https://chat.hyperledger.org/channel/iroha
StackOverflow https://stackoverflow.com/questions/tagged/hyperledger-iroha
Mailing List hyperledger-iroha@lists.hyperledger.org
Gitter https://gitter.im/hyperledger-iroha/Lobby
Telegram https://t.me/hl_iroha
YouTube https://www.youtube.com/channel/UCYlK9OrZo9hvNYFuf0vrwww

Thank you for reading the document!

166 Chapter 10. Join the Community

https://github.com/hyperledger/iroha/blob/master/.clang-format
https://github.com/KratosMultiphysics/Kratos/wiki/How-to-configure-clang%E2%80%90format
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines
https://lefticus.gitbooks.io/cpp-best-practices
https://stackoverflow.com/questions/1558194/learning-and-cross-platform-development-c
https://en.wikipedia.org/wiki/C%2B%2B17
https://en.wikipedia.org/wiki/Camel_case
https://en.wikipedia.org/wiki/Snake_case
http://www.doxygen.nl/
https://chat.hyperledger.org/channel/iroha
https://stackoverflow.com/questions/tagged/hyperledger-iroha
mailto:hyperledger-iroha@lists.hyperledger.org
https://gitter.im/hyperledger-iroha/Lobby
https://t.me/hl_iroha
https://www.youtube.com/channel/UCYlK9OrZo9hvNYFuf0vrwww


CHAPTER 11

FAQ

11.1 I’m new. Where to start?

Hello, newcomer! You are very welcome :) There are 2 ways for you to start with Iroha:

1. You can see what Iroha is an how it works by building a simple example network following our Getting Started
Guide

2. You can get acquainted with the core concepts of Iroha and start building your own Iroha network

Now you have your Iroha blockchain! Congratulations! If you have any questions on it, do not hesitate to contact our
community here: https://chat.hyperledger.org/channel/iroha

11.2 What type of data can be transferred?

Hyperleder Iroha allows you to send not only assets (you might get such impression due to a highly developed set of
commands and queries for serving such assets) but any data that will be stored in the chain as well.

The current implementation provides that opportunity at least via SetAccountDetail command and GetAccountDetail
query.

11.3 Can mobile device be a node?

There are two options depending on what you mean by mobile device.

If we are speaking about ARM-based hardware with some linux onboard (like Raspberry PI) or rooted Android device,
then it is possible to launch Iroha as a node (a peer within a network) on that device. In that case, Iroha will run as a
platform-native binary.

If we are speaking about default iOS or Android device with untouched factory shell (GUI), then it is generally not
possible and we are not providing any instructions regarding this. Though you still can create mobile applications that
use Iroha. They will be Iroha clients and would not serve as peers.

167

../getting_started/index.html
../getting_started/index.html
../concepts_architecture/index.html
../deploy/index.html
https://chat.hyperledger.org/channel/iroha
../develop/api/commands.html#set-account-detail
../develop/api/queries.html#get-account-detail


Iroha handbook: installation, getting started, API, guides, and troubleshooting, Release

In order to run Iroha on ARM device you have to build it on the target platform. Building Iroha requires notable amount
of RAM - for 32-bit ARM host you will need 8GB RAM. The build can be performed inside Docker container. To
prepare the container you will need to:

1. Clone Iroha git repo: https://github.com/hyperledger/iroha

2. Do docker build -t iroha-build-env . being in iroha/docker/develop

3. Run the newly built container and build there Iroha itself

Please do not forget to mount a folder with Iroha git repository to the container

11.4 What is the throughput (TPS)? Are there any performance test
results?

The efficiency of your Iroha network will depend on the configuration, hardware and number of nodes. You are
welcome to try out the load test in test/load directory and report the results.

168 Chapter 11. FAQ

https://github.com/hyperledger/iroha


CHAPTER 12

Doxygen Technical Documentation

We have auto-generated Doxygen documentation describing the technical components of HL Iroha v1. Here it is.

169

doxygen/index.html

	Overview of Iroha
	What are the key features of Iroha?
	Where can Iroha be used?
	How is it different from Bitcoin or Ethereum?
	How is it different from the rest of Hyperledger frameworks or other permissioned blockchains?
	How to create applications around Iroha?

	Concepts and Architecture
	Core concepts
	What’s inside Iroha?

	Quick Start Guide
	Prerequisites
	Starting Iroha Node
	Try other guides

	Integrated Projects
	Hyperledger Ursa
	Hyperledger Explorer
	Hyperledger Burrow

	Building Iroha
	Prerequisites
	Installing dependencies with Vcpkg Dependency Manager
	Build Process

	Configure
	Configure TLS for client-peer communication (torii)
	Deployment-specific parameters
	Environment-specific parameters
	Logging

	Deploy
	Running single instance
	Running multiple instances (peer network)
	Deploying Iroha on Kubernetes cluster
	Dealing with troubles

	Maintain
	Restarting Iroha node with existing WSV
	Iroha installation security tips
	Shepherd

	Develop on Iroha
	Client Libraries
	Key Pair Format
	Iroha API reference
	Use Case Scenarios

	Join the Community
	How Can I Contribute?
	Styleguides
	Places where community is active

	FAQ
	I’m new. Where to start?
	What type of data can be transferred?
	Can mobile device be a node?
	What is the throughput (TPS)? Are there any performance test results?

	Doxygen Technical Documentation

